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Analyses of morphological disparity can incorporate living and fossil taxa
to facilitate the exploration of how phenotypic variation changes through
time. However, taphonomic processes introduce non-random patterns of
data loss in fossil data and their impact on perceptions of disparity is
unclear. To address this, we characterize how measures of disparity
change when simulated and empirical data are degraded through random
and structured data loss. We demonstrate that both types of data loss can
distort the disparity of clades, and that the magnitude and direction of
these changes varies between the most commonly employed distance
metrics and disparity indices. The inclusion of extant taxa and exceptionally
preserved fossils mitigates these distortions and clarifies the full extent of the
data lost, most of which would otherwise go uncharacterized. This facilitates
the use of ancestral state estimation and evolutionary simulations to further
control for the effects of data loss. Where the addition of such reference taxa
is not possible, we urge caution in the extrapolation of general patterns in
disparity from datasets that characterize subsets of phenotype, which may
represent no more than the traits that they sample.
1. Background
Analyses of disparity seek to elucidate patterns in the evolution of morphological
variation and the processes that underlie them. Such analyses have shed light on
the emergence of animal body plans (e.g. [1]), mass extinction dynamics [2,3],
and the tempo and mode of major diversification events (e.g. [4,5]). An advan-
tage of these methods is their ability to characterize evolution in the absence of
a well-resolved phylogeny, which has led to their application to a wide variety
of evolutionary questions [6]. Many of these questions centre on how disparity
evolves through time (e.g. [7]), thereby necessitating the inclusion of palaeonto-
logical data. This is problematic as the processes of decay and preservation
inevitably degrade the information content of fossil remains, with different
depositional environments inducing different degrees of data loss [8]. Neverthe-
less, fossil phenotypes are routinely employed as proxies for whole-body
(organismal) disparity (e.g. [4,5,9,10–13]). Recent studies have suggested that
this practice can be taken one step further, and that for some clades, a subset
of the fossilized traits is all that is required to derive meaningful insights into
the evolution of organismal disparity within them [14,15]. However, these studies
have only considered whether such subsets are representative of all fossilized
characters, not entire phenotypes—the majority of which are never preserved
even under the most exceptional conditions for fossilization.
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Simulation studies have been used extensively to investi-
gate the effect of distributions of missing data on estimates of
phylogeny. This includes attempts to invoke fossilization-
style filters whereby missing data entries are concentrated
in taxa and/or characters [16–19]. Additionally, studies of
empirical phylogenetic data have found that fossilization-
style filters introduce significant differences in phylogenetic
signal, as does partitioning characters by how readily they
are fossilized [20–22]. Disparity studies are often based on
the same kinds of morphological data but relatively few
have directly assessed the impact of missing entries [23–27].
Of those that have, several focus on random data loss [23,26],
an unrealistic problem in empirical analyses given the tendency
for researchers to be selective in their sampling of morphologi-
cal variety and the differences in preservation potential between
different anatomical elements (e.g. between mineralized and
unmineralized tissues [17,28,29]). Others have focused on the
effects of non-random data loss [24,25,27]. However, these
studies have either induced unrealistically small differences in
data loss between groups of organisms [24], used highly
taxon-specific re-coding schemes [25], or inappropriately
characterized changes in disparity [27]. As such, the impact of
biostratinomic processes on morphological disparity remains
unclear.

Here, we explore the impact of random and non-random
data loss on our ability to accurately quantify morphological
disparity. For clarity, we consider data loss to be random
when each character score has an equal probability of being
lost, and non-random when these probabilities vary. First, we
simulate discrete character data along a tree with equal num-
bers of fossil and extant taxa. Next, we replicate the effects of
biostratinomic processes by progressively removing the charac-
ter scores of fossil taxa. For comparison, we also randomly
degrade the simulated data. These data are then analysed
with a suite of disparity indices, calculated using the general-
ized Euclidean distance [30] and the maximum observable
rescalable distance [26,31]. The results are then compared to
complementary analyses of empirical datasets degraded in
the same way to validate their applicability. Taken together,
our results demonstrate that both random and non-random
data can introduce substantial biases into analyses of morpho-
logical disparity. These biases vary considerably between
distance metrics and disparity indices. We demonstrate that
researchers should include extant taxa where possible, both
to mitigate the effects of these biostratinomic processes and
shed light on how the data loss they induce (observed and
unobserved) has differentially affected fossil taxa and morpho-
logical modules. Finally, we caution against the interpretation
of trends in disparity obtained from subsets of phenotype as
representative of whole organisms.
2. Methods
The following section outlines our methodological approach; a
more detailed version can be found in the electronic supplemen-
tary material of this manuscript. All analyses were conducted
using R [32].

(a) Assembling a generating tree and simulating a base
matrix

The diversitree tree.bd function [33] was used to generate a 64-
tip, fully bifurcating tree with 32 fossil tips, 32 extant tips, and
no zero-length branches (figure 1). Data were simulated along
the generating tree using a variation of the pipeline employed
by Smith et al. [34]. This pipeline uses the ape rTraitDisc function
to simulate discrete binary character data using a Markovian
model [35], specifically an equal-rates model with rate = 0.01.
All other rTraitDisc arguments were left in their default settings.
In an effort to achieve an empirically realistic distribution of homo-
plasy [36,37], we simulated the evolution of 254 binary characters
(4 : 1 character : taxon ratio) which collectively approximated the
per-character homoplasy distribution of the average empirical data-
set [38]. Per-character homoplasy was quantified using the
consistency index [39], which we calculated using functions from
the phangorn R package [40]. Moving forward, we refer to the con-
catenation of the 254 simulated characters as the ‘original matrix’.

(b) Introducing missing data
Empirical fossilization processes introduces distinct, non-random
distributions of missing data into morphological data as a result
of the sequential processes of: (i) soft tissue decay; (ii) disarticu-
lation; (iii) size dependent transport; (iv) erosion, abrasion and
degradation [8,29,41]. To approximate the effects of these pro-
cesses, we induced four increments of data loss in the fossil
taxa of the original matrix (figure 1a). We began by randomly
selecting and converting 43% of characters to missing for all
fossil taxa to simulate the decay of soft tissue features, which
on average constitute 43% of characters in morphological data-
sets [21]. We repeated this process 100 times to generate 100
degraded versions of the original matrix. These matrices were
then further degraded by converting 60% of the remaining char-
acters to missing for all fossil taxa in 20% increments. This
produced 100 four-matrix series across which the proportion of
fossil character scores coded as ‘missing’ increased from 43% to
54.4%, 65.8%, and finally 77.2%, which equates to 21.5%,
27.2%, 32.9% and 38.6% of all character scores being lost from
each matrix, respectively. These series are referred to as the
‘non-randomly degraded matrices’ or simply the ‘first series’
throughout the rest of this study.

We then repeated this process twice over, increasing the ran-
domness with which character scores were selected for removal
each time. In the first repetition (hereafter the ‘second series’),
data loss was still restricted to the fossil taxa but was less uniform;
individual character scores were selected for removal, rather than
individual characters (figure 1b). In the second (hereafter the ‘third
series’), each character score, regardless of whether it belonged to
an extant or fossil taxon, had an equal probability of being lost
(figure 1c). This produced two sets of 100 series across which
the proportion of all character scores coded as ‘missing’ increased
from 21.5%, to 27.2%, 32.9% and finally 38.6%. We refer to these
series as the ‘randomly degraded matrices’. Furthermore, we col-
lectively refer to both the randomly and non-randomly degraded
matrices as the ‘degraded matrices’.

(c) Distance matrix computation and ordination
Pairwise distance matrices were calculated for the original and
degraded matrices using the Claddis calculate_morphological_
distances function [26]. We used both the original version (ged_
type = ‘wills’) of the GED [42] and maximum observable rescaled
distance [26,31] so that we could ascertain how the contrasting
approaches to accommodating missing data of the two distance
metrics affect morphological disparity. Combinations of taxa
with non-overlapping character data were identified and the
most incomplete taxa removed until a complete matrix could
be generated using the Claddis trim_matrix function [26]. Two
sets of MORD matrices were generated: one for pre-ordination
disparity characterization and another for post-ordination. The
latter were first transformed using a square root term and then,
along with all others intended for ordination, further
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Figure 1. Pipeline used to simulate character data and induce non-random data loss across fossil taxa (a), random loss across fossil taxa (b) and random loss across
all taxa (c).

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230522

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

ug
us

t 2
02

3 
transformed via the application of the Cailliez correction [43].
These transformations help ensure the resulting ordinations are
Euclidean [30]. Distance matrices were ordinated via principal
coordinates analysis, otherwise known as classical multi-
dimensional scaling, which we conducted using the ape pcoa
function [35].

(d) Characterizing disparity
We used both pre-ordination and post-ordination indices to
characterize the disparity of the original and degraded matrices
to enable an assessment of the impact of ordination. For pre-ordi-
nation characterization, we used the mean pairwise distance,
maximum pairwise distance and mean pairwise extant–fossil
distance, the latter of which was defined as the average of the
morphological distances separating the extant taxa from the fos-
sils. To characterize disparity post-ordination, we used the sum
of variances, sum of ranges and the mean Euclidean distance
between the extant and fossil centroids. Index values were
verified using functions from the dispRity R package [44].

Two sets of analyses were employed using these indices. The
first used all six to characterize the effects of fossilization on the
disparity of matrices containing both extant and fossil taxa (here-
after described as ‘mixed’ matrices’). One hundred 64-taxon
subsamples were randomly drawn with replacement from the
distance matrices and ordinations of each series, their disparity
subsequently characterized using pre- and post-ordination indi-
ces, respectively. The median disparity values for each set of
100 subsamples were then isolated. This yielded 100 values of
each disparity index (one per distance matrix/ordination) for
each combination of missing data percentage and missing data
type (random versus non-random). These values were then com-
pared to the median disparity values of the original matrix,
which were derived in the same way. To make the changes in
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disparity associated with data loss easier to interpret, we present
them as the ratio between the median disparity of the original
and degraded matrices.

The second set of analyses applied the same approach as the
first with three key differences. Firstly, as the aim of these analyses
was to quantify how data loss affects the disparity of matrices
wholly composed of fossil taxa (hereafter described as ‘fossil
matrices’), all 32 extant taxa were removed from each distance
matrix and ordination prior to subsampling. Accordingly, the sub-
samples drawn were composed of 32 taxa, not 64. Finally, as the
absence of extant taxa made it impossible to calculate the mean
pairwise extant–fossil distance and mean distance between the
extant and fossil centroids, the effects of data loss on fossil dis-
parity were characterized using the mean pairwise distance,
maximum pairwise distance, sum of variances and sum of ranges.

(e) Empirical validation
To establish the biological realism of the findings from our simu-
lations, we repeated our analyses on subsets of the 4541-character
mammal dataset first assembled by O’Leary et al. [45]. Following
the approach of O’Reilly & Donoghue [41], we derived 2545- and
254-character subsets of the dataset, which we refer to as the ‘large
mammal matrix’ and ‘small mammal matrix’ going forward. This
allowed us to explore how dataset size interacts with the effects of
data loss. Both subsets contained the same 66 taxa, of which only
20 were fossils. These subsets were remarkably complete for
empirical datasets, as less than 5% of all character scores and
less than 12% of all fossil character scores were coded as missing.
Nevertheless, their incompleteness meant that all measures of dis-
parity derived from them incorporated small amounts of missing
data. It also meant that the proportion of the remaining fossil char-
acter scores coded as ‘missing’, not the proportion of all, increased
from 43% to 54.4%, 65.8% and 77.2% in each series of degraded
matrices we derived from these subsets. Given the extant : fossil
taxon ratio (46 : 20), this equated to 13%, 16.5%, 20% and 23.5%
of the remaining character scores being changed to ‘missing’,
respectively.
3. Results
All ratios reflect the difference between the disparity of the
original, small mammal and large mammal matrices, and
that of the degraded matrices derived by removing data
from them. Ratios above 1 represent overestimations of dis-
parity, whereas those below 1 are underestimations. While
our results focus on the average change in disparity induced
through incrementally removing data from 100 copies of the
same matrix, it is worth noting that different patterns of
change were recovered between individual series. Some
exhibited unidirectional, constant changes in disparity,
while the changes induced in others varied in their polarity
and magnitude between increments of data loss.

(a) Analysing extant and fossil taxa together
Overall, the average change in disparity induced by ran-
domly removing character scores from mixed matrices
exceeded that produced by non-random data loss when
MORD was employed, except for the distance between the
extant and fossil centroids (figures 2 and 3). When 38.6% of
character scores were removed, the median changes rooted
in random data loss ranged from decreases of over 12% to
increases of over 32%, while those resulting from non-
random data loss ranged from decreases of just over 10% to
increases of just over 30% (electronic supplementary material,
table S1). However, the maximum changes in all three pre-
ordination indices were more extreme in the non-randomly
degraded matrices than the randomly degraded matrices,
with the maximum pairwise distance increasing by more
than 70% (electronic supplementary material, table S1). This
was also true for the changes induced through data loss in
the distance between extant and fossil centroids.

On average, random data loss in mixed matrices induced
greater decreases in GED-based mean pairwise distance,
maximum pairwise distance, sum of variances and sum of
ranges than non-random (figures 2 and 3). The inverse was
true for the mean extant–fossil pairwise distance (figure 2e)
and the distance between the extant and fossil centroids
(figure 3f ), although the maximum decrease recovered in
the former through the removal of fossil characters
(−46.9%) exceeded that produced by random data loss
(−31.5%; electronic supplementary material, table S1).
When 38.6% of character scores were converted to missing,
the median effects of random data loss on disparity ranged
from −13.3% to −38.3%, while the non-random removal of
fossil characters either had no effect (maximum pairwise dis-
tance) or induced decreases of 22.1–39.5% (electronic
supplementary material, table S1).

Except for the sum of ranges, MORD-based disparity gen-
erally increases as data are lost from a mixed matrix (figures 2
and 3). By contrast, GED-based disparity generally decreases.
On average, the fidelity of GED deteriorated to a greater
extent with data loss than MORD. When GED was used,
the most incomplete degraded matrices presented median
disparity values up to 39.5% smaller than that of the original
matrix, whereas the most extreme change recovered when
MORD was employed was an increase of 32.3% (electronic
supplementary material, table S1). However, the effects of
data loss on disparity were much more varied when
MORD was employed over GED, as across all indices apart
from the sum of ranges, the range and variance of the
changes quantified using the former surpassed those employ-
ing the latter (electronic supplementary material, table S1).

Across almost every combination of distance metric and
disparity index, the direction of change did not differ
between random and non-random data loss, with two excep-
tions (figures 2 and 3). The first occurred when changes in
maximum pairwise distance were calculated using GED
(figure 2f ); non-random data loss did not produce any
changes in disparity, whereas the random removal of charac-
ter scores produced a decline. The other exception occurred
when the sum of ranges was calculated using MORD
(figure 3b). While both types of data loss produced an overall
decrease in this measure of disparity, the extent to which the
randomly degraded matrices differed from the original
decreased as more data were removed, whereas it increased
in the non-randomly degraded matrices. The polarity of the
average change in disparity did not differ between the two
types of data loss. However, a much greater variety of
changes was induced when entire fossil characters were
removed, MORD was employed, and all indices (excepting
sum of ranges) were used to quantify disparity (figures 2
and 3). The broadest distribution of changes was recovered
from the most incomplete non-randomly degraded matrices
(electronic supplementary material, table S1). A much
weaker version of this relationship was recovered when
GED was used to calculate both types of mean pairwise dis-
tance (figure 2d,e), the sum of variances (figure 3d ) and sum
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Figure 2. How different patterns of data loss affect the mean pairwise distance (a,d), mean pairwise extant–fossil distance (b,e), and maximum pairwise distance
(c,f ) of the first and third series of simulated mixed matrices. Each boxplot summarizes 100 original-degraded matrix ratios: the whiskers encompass the range, the
box delimits the interquartile range, and the central line denotes the median. Ratio 1 : 1 (no change) = grey dashed line. GED = generalized Euclidean distance.
MORD = maximum observable rescaled distance.
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of ranges (figure 3e). The maximum pairwise distance
(figure 2f ) and the distance between the extant and fossil
centroids (figure 3f ) presented the opposite relationship.

Pivoting between pre-ordination and post-ordination
indices did not consistently alter the effects of missing data
on disparity (figures 2 and 3; electronic supplementary
material, table S1).
(b) Analysing fossil taxa in isolation
Random and non-random data loss induced comparable pat-
terns of change in the MORD-based mean pairwise distance,
maximum pairwise distance, and sum of variances and GED-
based mean pairwise distance of fossil matrices (figure 4).
However, they caused different patterns of change in other
indices. While both types of data loss generally produced
degraded matrices with smaller GED-based maximum pair-
wise distances (figure 4f ) and sums of variances (figure 4g)
than the original matrix, the extent to which the randomly
degraded matrices differed decreased as more character
scores were removed, whereas it increased in the non-
randomly degraded matrices. The sum of ranges of the
degraded matrices also presented this dichotomy, regardless
of the distance metric employed (figure 4d,h). In two indices,
the final increment of random data loss we induced caused
the direction of change to flip; both the MORD-based sum
of ranges (figure 4d ) and GED-based maximum pairwise dis-
tances (figure 4f ) of the most incomplete randomly degraded
matrices exceeded that of the original matrix.

Non-random data loss produced a greater variety of
changes in mean pairwise distance, whereas the range of
and variance in maximum pairwise distances recovered
was higher in the randomly degraded fossil matrices (elec-
tronic supplementary material, table S2). The changes in
sum of ranges and sum of variances did not vary as consist-
ently between the two types of data loss. When MORD was
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employed, non-random data loss produced a greater variety
of changes, while GED-based sums of ranges and sums of
variances varied more substantially under random data loss
(figure 4, electronic supplementary material, table S2). In
most cases, the relative magnitudes of the changes in dis-
parity caused by different types of data loss varied between
each combination of disparity index and distance metric.
Only the sum of ranges presented any consistency, as non-
random data loss induced a greater change than random
across both distance metrics (figure 4; electronic supplemen-
tary material, table S2). This was also the case for the MORD-
based mean pairwise distances, and GED-based maximum
pairwise distances and sums of variances, whereas the oppo-
site was true when these indices were calculated using the
other distance metric (GED and MORD respectively). In the
most incomplete fossil matrices (77.2% of character scores
missing), the median changes in disparity caused by
random data loss ranged from −47.7% to +218.7%, whereas
in those subjected to non-random data loss, they ranged
from −61.9% to +16.3% (electronic supplementary material,
table S2).

When fossil data are degraded and analysed in isolation,
the differences between MORD and GED become less
defined (figure 4). GED-based measures of disparity were
generally lower for the degraded matrices than the original
matrix. Similarly, the MORD-based mean pairwise distances
(figure 4a) and sums of ranges (figure 4d ) of the degraded
matrices were lower than that of the original matrix. By con-
trast, MORD-based maximum pairwise distances (figure 4b)
and sums of variances (figure 4c) increased with data loss.
In the absence of complete taxa, the fidelity of MORD dete-
riorated to a greater extent than GED, with the sum of
variances of the most incomplete matrices doubling when
calculated using the former (electronic supplementary
material, table S2). Furthermore, using MORD also presented
a greater range and variance in the changes in mean pairwise
distance, maximum pairwise distance and sum of variances
(figure 4; electronic supplementary material, table S2). This
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Figure 4. How different patterns of data loss affect the mean pairwise distance (a,e), maximum pairwise distance (b,f ), sum of variances (c,g) and sum of ranges
(d,h) of the fossil components (the fossil matrices) of the first and second series of simulated matrices. Each boxplot summarizes 100 original-degraded matrix ratios:
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GED, generalized Euclidean distance; MORD, maximum observable rescaled distance.
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was also partially true for the sum of ranges of the degraded
matrices, although the most incomplete matrices varied more
when GED was used (figure 4h). The relative magnitude of
these changes varied between indices. GED-based mean pair-
wise distances and sums of ranges diverged more from the
original matrix than their MORD-based counterparts, while
the inverse was true for the maximum pairwise distance
and sum of variances (electronic supplementary material,
table S2). The effects of data loss on disparity peaked in the
most incomplete matrices, with the median changes ranging
between −12.6% and +118.7% for MORD, and −61.9% and
+10.3% for GED (figure 4; electronic supplementary material,
table S2).

As with the analyses including extant taxa, the effects of
data loss on the disparity of fossil matrices did not consist-
ently vary between the pre-ordination and post-ordination
indices. Rather, the effects not attributable to the type of
data loss induced or distance metric used were generally
index-specific (figure 4; electronic supplementary material,
table S2).
(c) Analyses of empirical data
Equivalent analyses of the mammal matrices presented
comparable results to those recovered from analyses of the
simulated matrices, with one notable exception. When the
mammal matrices were randomly degraded and their sum
of ranges calculated using MORD (see electronic supplemen-
tary material for figures), disparity gradually decreased,
whereas in the simulated data analyses, this combination of
data loss, distance metric and index produced a net decrease
in disparity but one that lessened as the amount of data
removed increased (figures 3b and 4d ). Additionally, analyses
of both mammal matrices resulted in smaller changes in dis-
parity across all six indices as character scores were removed,
but as the increments of data loss were smaller than in the
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analyses of the original matrix, this was expected. When GED
was employed, no consistent differences were recovered
between the small and large mammal matrices, despite the
differences in taxon–character ratio. However, MORD charac-
terized smaller changes in disparity in the large degraded
mammal matrix than the small degraded mammal matrix
(see electronic supplementary material for figures).
ing.org/journal/rspb
Proc.R.Soc.B
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4. Discussion
(a) Implications for distance metric and disparity index

selection
GED and MORD accommodate missing data in fundamen-
tally different ways; GED replaces missing dissimilarities
with the mean of those that can be calculated, whereas
MORD scales the distance values derived from the available
data by the number of characters that could be compared for
each taxon pair. This difference is reflected in how they
change as data are lost. Our results confirm that using GED
in analyses of incomplete datasets leads to substantial misre-
presentations of disparity [23,24,26]. Furthermore, they
corroborate the negative relationship recovered between
GED-based disparity and data loss in previous empirical ana-
lyses [23,24]. This relationship is to be expected as all character
dissimilarities are squared as part of the calculation of GED.
This transformation does not affect observed dissimilarities,
as all are either 0 or 1 in binary character datasets, but it
almost always diminishes the mean dissimilarities that are
used in place of incalculable dissimilarities, as most fall
between 0 and 1. Where these values replace a dissimilarity
that would have been 1, this squaring exacerbates the
reduction in dissimilarity. Conversely, where they replace a
dissimilarity that would have been 0, the increase in dissimi-
larity between two taxa is minimized by the squaring. This
causes GED to tend towards zero as character scores are
removed. This mirrors the effect of data loss on distance
metrics which simply ignore incomparable character pairs,
such as the raw Euclidean distance (RED) and its derivatives
[27]. As GED was designed as an extension to the RED that
accommodates missing data instead of just ignoring it, the
fact that these distance measures are similarly affected by
data loss calls into question the value of using GED over RED.

We find further support for the view that MORD gener-
ally outperforms GED in accurately characterizing the
disparity of a clade after biostratinomic processes have
degraded entire characters [23,24,26] but not when data loss
is effectively random. The invariance in mean pairwise dis-
tance and increase in sum of variances we recover as
character scores are non-randomly removed matches the
results of previous analyses [24]. However, the decrease in
sum of ranges we recover does not [24]. The cause of these
differences is unclear, but they likely lie in the heterogeneous
character compositions of the underlying datasets. This
interpretation is supported by the fact that we recover the
same positive relationship between sum of ranges and data
loss in our empirical analyses as Lehmann et al. [24]. Simi-
larly, it is not immediately apparent why different indices,
particularly those derived post-ordination, are affected by
data loss in different ways when calculated using MORD.
Further theoretical work is needed to resolve this issue.
What is apparent, however, is that the increase in variance
in MORD-based estimates of disparity is rooted in the
increase in the heterogeneity of the characters being com-
pared for each pair of taxa in each degraded matrix. As
each degraded matrix differed in its distribution of missing
data, so too did the comparable characters for each taxon
pair within it. Different sets of comparable characters pro-
duce different values of MORD and thus different estimates
of disparity. As such, it is to be expected that MORD-based
estimates of disparity will become less precise with increasing
data loss.

There were other conflicts between our results and those
of previous studies. As the sum of variances and mean
distance from centroid are deterministically related, their
covariance is to be expected [34]. As such, the invariance
under data loss of the MORD-based mean distances from
centroid reported by Sutherland et al. [23] conflict with the
changes in MORD-based sum of variances we recovered.
This could be a consequence of ignoring negative eigenvalues
rather than correcting for them [23]. However, this expla-
nation remains untested. Another conflict lies in the
decrease in crinoid pairwise distances as data were removed
recovered by Deline & Thomka [25] using the Gower coeffi-
cient (GC), the distance metric that MORD is based upon.
In analyses of binary character data, there is no difference
between how these two metrics are calculated and so they
should behave the same way under data loss. As such, the
results presented by Deline & Thomka [25] conflict with the
relative invariance in MORD-based mean pairwise distance
we recovered, although this almost certainly reflects
differences in the composition of the underlying datasets.

At first glance, our results could be taken as further evi-
dence that pre-ordination indices of disparity outperform
post-ordination approaches [23,24,26,46]. However, we
found that this only applies to mean pairwise distances. We
followed Gerber [46] in using the maximum pairwise dis-
tance as a pre-ordination analogue of the sum of ranges
and found it to be highly susceptible to the effects of missing
data. Additionally, we found that it responded differently to
data loss than its supposed post-ordination counterpart.
These results lay bare the deficiencies of pre-ordination dis-
parity measures; while there are numerous post-ordination
indices for characterizing different aspects of morphological
disparity [47], there are relatively few pre-ordination alterna-
tives. Future studies would do well to focus on addressing
this deficiency.
(b) Implications for other measures of disparity
Analyses of the effect of taphonomic compaction on trilobites
using geometric morphometrics have shown that the result-
ing distortion of landmarks can effectively treble the spread
of points in morphospace [48]. This result, coupled with the
general correlation between estimates of disparity derived
from categorical and continuous data [49–52], suggest that
our results have bearing on quantitative analyses of disparity
more generally, although the exact effects of continuous data
loss have yet to be characterized. When they are, it is likely
that they will behave in a similar way to measures of categori-
cal disparity derived using GED, as the ‘thin-plate spline’ and
‘regression’ methods typically used to account for missing
landmarks do so by estimating their location based upon
the remaining available data [53], which is similar to how
the distance metric accommodates missing data. Our results
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also have implications for qualitative assessments of morpho-
space occupation. Typically, these focus on the relative
positions of different clusters of taxa in two or three dimen-
sions derived through ordination. Our analyses demonstrate
that data loss can drastically change these distributions by
causing the distances separating fossil and extant clades to
inflate (when MORD is employed) or contract (when GED
is employed) by over 40%, depending on the distance
metric used. These issues will manifest whenever missing
data is unevenly distributed amongst clusters and/or
clades, compounding the well-documented issues with
using visualizations of morphospace occupation for interpret-
ing relative disparity [46].
Proc.R.Soc.B
290:20230522
(c) Past problems and future solutions
The regime of non-random data loss we used is just one of
the many plausible outcomes of fossilization. Of the others
that have been applied in studies of disparity, the taxon-
specific re-coding scheme of Deline & Thomka [25] probably
introduced the most realistic pattern of data loss, as the prob-
abilities of loss assigned to each character reflected the
echinoderm body plan the sampled features belonged to
and its propensity for disarticulation and degradation.
However, such a scheme cannot be extended to other taxa
without a comparable taxon-specific knowledge of their taph-
onomy; a worthy goal when studying the evolutionary
histories of specific clades but an impractical one when seek-
ing to quantify the effects of decay and preservation on
disparity more generally.

The linkage algorithm introduced by Smith et al. [27]
appears to resolve this issue by using the fossil components
of mixed matrices to derive probabilities of loss that can be
applied in the artificial degradation of the extant components.
However, their analyses of the resulting patterns in disparity
were compromised by their decision to use the Manhattan
distance, an unbounded metric which simply ignores dissimi-
larities rendered incalculable due to missing character scores.
Predictably, these distances collapsed as character scores
were removed [27]. As MORD and GED handle missing data
differently, these results do little to inform expectations of the
impact of data loss in contemporary analyses of disparity. A
simple solution to this issue would be to analyse data degraded
by the linkage algorithm using either of these metrics, although
such analyses would still be limited to mixed datasets with
well-sampled extant and fossil components. This limitation
could be overcome by the development of a framework capable
of simulating contingent character evolution, which would
allow the algorithm to be applied in analyses of exclusively
palaeontological data.

Lehmann et al. [24] came closest to quantifying the
general effects of non-random data loss on morphological
disparity. However, their study is compromised by the unrea-
listically small differences (40%) in missing data that they
introduced. On average, 43% of morphological data relates
to soft tissue features, which rapidly decay after death [20].
Factor in data loss associated with other biostratinomic pro-
cesses, and it is perhaps unsurprising that over 70% of
fossil character scores are missing in some mammal datasets
[54]. These data loss can be even more severe in extinct
clades: the average completeness of the skeletal and soft
tissue fossil records for acanthodians sits at 14% and 18%,
respectively [55]. Our study is similar in approach to that of
Lehmann et al. [24] but crucially, we introduced much more
realistic differences in data loss between our groups of taxa,
even if the most extreme differences (77.2% of fossil data
versus 0% of extant) were, perhaps, still too conservative.
Except for testing even more extreme differences, this
approach could be improved by a more granular understand-
ing of the composition of empirical morphological data
matrices in terms of the average apportioning of characters
between different anatomical systems. If this knowledge
could be combined with estimates of the average amount of
character data lost from the remains of different anatomical
systems during each stage of the fossilization process (e.g.
[28]), then future studies could approximate the effects of
each stage on morphological data with much greater accuracy
using a framework similar to the one used herein.

(d) Caution is needed when using fossils as proxies
for organismal disparity

Many analyses of disparity are solely based on fossil data by
necessity (e.g. [4,5,9,10–13]). Others have opted to remove or
ignore extant data to foster equivalence in the sampling of
clades through time (e.g. [7,27]). These studies implicitly
assume fossil anatomical variety to be an adequate proxy
for organismal disparity, even though some fossil samples
are demonstrably poor proxies for the disparity of others
[23]. Sutherland et al. [23] demonstrated this by analysing
ichthyosaur disparity through time with and without
exceptionally well-preserved specimens recovered from
lagerstätten, from which they recovered distinct patterns in
taxon distance from centroid through time. Hughes et al. [7]
took this approach one logical step further, excluding data
from extant taxa because of concerns that the evolutionary
histories of extant clades are, by definition, incomplete.

Our analyses demonstrate that this approach is compro-
mised by the incomplete sampling of phenotype that results
from analyses of fossil taxa alone. MORD-derived indices of
disparity were the most stable measures we tested, with
most changing by around 10% or less on average through
the most intense regimes of non-random data loss we simu-
lated. However, the range of changes recovered increases
beyond this threshold as the amount of data loss increases,
peaking when fossils are analysed in isolation. Specifically,
MORD-based indices have the potential to underestimate the
disparity of a group by more than 30% or overestimate it by
more than 60% due to the loss of characters in fossil taxa.
Under random data loss, the fidelity of MORD worsens,
especially when used to calculate the maximum pairwise dis-
tance or sum of variances of a sample. These indices increased
by 115% and 118%, respectively, in the most incomplete ran-
domly degraded matrices. Most palaeontological datasets do
not include soft tissue characters, which constitute an average
of 43% of the morphological datasets that do sample them.
Therefore, the higher levels of missing data introduced in
this study (e.g. 77.2% of fossil character scores) are likely the
most realistic when the effects of physical biostratinomic pro-
cesses and non-uniform preservation between sites are also
accounted for [10,23,56]. Factoring in the unavoidable vari-
ation in rates of preservation between environments [8] and
through time [57], it is clear that disparity-through-time ana-
lyses that do not explicitly account for missing data have the
potential to misrepresent evolutionary patterns in total
organismal disparity. Given the prevalence of the distance
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metrics and indices, we tested in contemporary analyses of dis-
parity (e.g. [1,2,4,5,7,9–13]), it is likely that this potential has
been realized on numerous occasions, casting doubt on our
understanding of landmark evolutionary events such as the
fish-tetrapod transition [4] and the rise and fall of the dino-
saurs [5,58], as well as the validity of the widely accepted
view that clades tend to maximize their disparity early in
their evolutionary histories [1,7]. As most datasets that com-
bine palaeontological and neontological data do not present
early high disparity [7], the pervasiveness of this pattern in
extinct clades may have been exaggerated by uneven data
loss in fossil taxa.

(e) Analyses of parts do not capture the disparity
of whole organisms

The extrapolation of general evolutionary insights from sub-
sets of morphological data in analyses of disparity is not
limited to using fossil anatomies as proxies for entire organ-
isms. Recent studies have suggested that parts of organisms
can be used to adequately represent the disparity of the
whole [15,59], despite most morphological traits differing in
evolutionary rate and mode (e.g. [60–62]). Specifically, Hop-
kins [14] found cranidial shape be an adequate proxy for
their sampling of species-level trilobite disparity, while the
analyses of Deline & Ausich [15] indicated that only 20% or
so of the characters they sampled were required to capture
most of the properties of the crinoid morphospace they gen-
erated. Our results caution against this kind of extrapolation,
as it only serves to compound the effect of data loss on per-
ceptions of disparity. It also fails to account for the non-
random differences in phylogenetic signal between different
character types [20,21,63–66]. As different parts of organisms
imply different evolutionary histories, it is illogical to assume
the opposite in analyses of disparity. If the morphological
variety of fossil species generally misrepresents total organis-
mal disparity, then it follows that subsets of fossil anatomy
will do the same for whole-fossil disparity.

While we are far from being able to definitively describe
the effects of decay and preservation on patterns of disparity,
our results suggest that extrapolating the organismal dis-
parity of a clade from palaeontological data is fraught with
risk and uncertainty. This is partially because such datasets
are often rife with missing entries, the effects of which are
readily constrained through simulation, but also because
sampling subsets of fossil anatomy often results in ‘hidden’
losses, features lost to biostratinomic processes that go
uncodified. Understanding how these hidden losses are dis-
tributed across subsets of taxa and morphological features
is essential if one is to be used as a proxy for all. However,
these distributions are unknowable without a point of refer-
ence. If the intent is to study the evolution of organismal
disparity within a group, the reference point must be a com-
plete organism, unaltered by the effects of decay and other
biostratinomic processes. Such additions cannot ‘complete’
morphological datasets, for it is practically impossible to
codify every aspect of a set of phenotypes even if the organ-
isms they belong to are all extant, but they can reveal how
hidden losses are distributed amongst fossil taxa. In doing
so, they facilitate simulations that can constrain the plausible
range of patterns in organismal disparity implied by the data.
Practically, such additions can only be made in analyses of
clades with extant descendants. Studies of whole-fossil
disparity impose more achievable requirements; the point
of reference need only preserve the missing elements one
intends to constrain the evolution of. However, our results
suggest that this may be the limit of the explanatory power
of such analyses; subsets of fossil anatomy will not reliably
recover the same patterns in the evolution of disparity as
datasets composed of characters more representative of the
whole organism. How the relative disparity of crinoid sub-
classes changes depending on the body regions emphasized
during sampling reflects this [15]. As such, it is best to view
any correlations between the disparity of fossilized parts
and whole organisms [14,15] as fortuitous, rather than
manifestations of a general evolutionary phenomenon.

It is important to recognize that, in many cases, it is not
possible to elucidate how hidden losses are distributed
amongst fossil taxa. Where extant representatives are lacking
and the fossils that remain are inconsistently preserved, the
simplest solution is to resist the temptation to derive general
trends from analyses of subsets of anatomy, whether they be
fossils or parts of fossils, and accept that the results reflect no
more than the aspects of organismal biology they capture.
Ancestral state estimation approaches can facilitate this type
of analysis by filling in the gaps created by the non-preser-
vation of taxa [67] and character scores [68] in particularly
incomplete datasets. If the extrapolation of more general
trends from anatomical subsets is a necessity, the results of
this study can be used to provide coarse error bars for the
estimates of disparity derived. However, it is better if such
palaeontological datasets are restricted to analyses of the
specific features and modules they sample, where the effects
of data loss can be accounted for, and confidence placed in
the trends that are borne out.

5. Conclusion
Both random and structured data loss can change perceptions
of morphological disparity. How they change depends on the
distance metric and disparity index employed, as well as how
missing data are distributed across a dataset. However, in
most cases pre-ordination indices calculated using MORD
change the least as data are lost. In analyses of palaeontological
datasets, the addition of extant taxa mitigates the effects of fos-
silization in two ways; it minimizes the deviations in disparity
caused by decay and preservation, and reveals the patterns of
data loss induced by these processes that would otherwise go
uncodified. By extension, well-preserved fossils lessen the
impact of missing data on analyses of subsets of fossilized
anatomies and highlight how biostratinomic processes differen-
tially degrade different morphological modules. Understanding
these hidden patterns of data loss is an essential first step
towards drawing general evolutionary trends from subsets of
morphology, as it facilitates the use of simulations that can con-
strain their impact and thus control for the effects of taphonomy
and other deleterious processes. In many cases, however, this is
not possible due to a lack of extant descendants and/or well-
preserved fossils. While our results can provide error bars
that coarsely constrain the plausible range of patterns in orga-
nismal disparity implied by subsets of anatomy, our findings
caution against this kind of extrapolation. Where the distri-
butions of missing data introduced by structured data loss are
unknown, as is often the case in palaeontological datasets,
interpretations of patterns in disparity are best limited to the
evolution of the sampled features.
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