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Abstract

Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain 
both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship 
between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, pre
cluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early 
archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology test
ing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the 
Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early- 
Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated 
tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multi
cellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and 
Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our 
analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding 
with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.
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Significance
Glaciation events of the distant past (720 to 635 million years ago) have been proposed as a driving force for the origin of 
multicellularity in plants (Archaeplastida). Here, evolutionary analyses produce divergence time estimates for multicel
lular plants (e.g. red algae and streptophyte algae) spanning this period (the Cryogenian). Our work is compatible 
with the hypothesis that ancient glaciations facilitated the origin of multicellularity in plants.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
The early evolution of the superkingdom Archaeplastida, 
from the first photosynthetic eukaryotes to the earliest 
land plants, transformed the biosphere (Lenton et al. 
2016; Bengtson et al. 2017; One Thousand Plant 
Transcriptomes Initiative 2019; Burki et al. 2020; Delaux 
and Schornack 2021; Schön et al. 2021; Bowles et al. 
2022; Irisarri et al. 2022), paving the way for flora that 

would dominate terrestrial environments. Archaeplastid evo
lution encompasses a vast period in Earth history, with diver
gence time estimates spanning the middle Paleoproterozoic 
to late Neoproterozoic (Sánchez-Baracaldo et al. 2017; 
Betts et al. 2018; Lutzoni et al. 2018; Morris et al. 2018; 
Strassert et al. 2021). During this formative period, early ar
chaeplastids influenced the composition of the atmosphere 
as the dominant primary producers (Brocks et al. 2017; 
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Braakman 2019), provided new ecological niches promoting 
the diversity of lineages spanning the tree of life (Lutzoni et al. 
2018; Del Cortona et al. 2020) and led to the development of 
more complex food webs (Brocks et al. 2017). Descendants of 
the archaeplastid crown-ancestor include the rhodophytes, 
glaucophytes, chlorophytes, streptophyte algae, and land 
plants (Guiry et al. 2014; Christenhusz and Byng 2016; 
Corlett 2016; Lughadha et al. 2016), all of which have re
sponded to environmental challenges with novel adaptive 
mechanisms.

In Archaeplastida, macroscopic organization ranges 
from filamentous species to siphonous chlorophytes to 
3D multicellular organisms, with multicellularity evolving 
independently on several occasions (Umen 2014). These 
independent transitions to multicellularity likely occurred dur
ing the Neoproterozoic (Knoll 2011; Del Cortona et al. 2020). 
The Cryogenian (720 to 635 million years ago; Ma) is charac
terized by two major glaciation events, the Sturtian (717 to 
643 Ma) and the Marinoan (656 to 626 Ma) (Hoffman 
et al. 1998; Stern et al. 2006). These global glaciations, 
termed Snowball Earth events, encased the Earth in ice 
(Hoffman et al. 2017), and they have been hypothesized as 
an evolutionary driver of multicellularity in Archaeplastida, 
Metazoa, and fungi (Brocks et al. 2017; Del Cortona et al. 
2020; Simpson 2021). In particular, Simpson (Simpson 
2021) has hypothesized that the 70 million year-long 
Sturtian glaciation would have led to the near-complete 
loss of temperate and tropical water habitats, providing a 
geologically unique, unexplored marine ecological space for 
the evolution of multicellularity (the Cryogenian multicellular
ity hypothesis). Seawaters of the Cryogenian would have in
creased in viscosity, limiting the ability of unicellular life to be 
motile, feed, and acquire nutrients. Multicellularity may have 
provided a mechanism to increase motility and size, enabling 
optimization of nutrient acquisition and metabolic rate (Solari 
et al. 2006; DeLong et al. 2010).

Cryogenian glaciations have also been proposed as a dri
ver of the colonization of land by early archaeplastids in the 
Cryogenian Plant Terrestrialization hypothesis (CPT; Becker 
2013; Williamson et al. 2019; Žárský et al. 2022). The CPT 
hypothesis argues that the terrestrial component of snow
ball Earth environments was a crucial driver for land plant 
terrestrialization, serving as an intermediary between 
aquatic and terrestrial habitats. This is because ice environ
ments are dry, exposed, and extremely cold, in contrast to 
the high viscosity cold sub-glacial seawater habitats. 
Glacial environments would have exposed ancestral strep
tophytes to the same environmental challenges that their 
descendents would have faced in adapting to life on land 
outside, viz. extreme temperature, irradiance, and desicca
tion (de Vries and Archibald 2018). Thus, the CPT hypoth
esis argues that ancestral land plants would have been 
preadapted to life on land, exapting adaptations evolved 
on the icy surfaces of Snowball Earth.

Both the Cryogenian multicellularity and CPT hypotheses 
make specific predictions about the time intervals during which 
the evolution of multicellularity and terrestrialization, respect
ively, occurred within Archaeplastida. The Cryogenian multicel
lularity hypothesis requires that archaeplastid multicellularity 
evolved coincident with one or more of the Snowball Earth 
events and the CPT hypothesis requires that land plants evolved 
in their aftermath. Here, we examine whether these hypoth
eses are consistent with the timescale of archaeplastid evolu
tion using phylogenetics, divergence time estimation, and 
ancestral trait reconstruction. While previous studies have 
aimed to understand the relationships and timescale of green 
plant evolution, these have often focused specifically on chloro
phyte (Del Cortona et al. 2020; Nie et al. 2020; Hou et al. 2022; 
Yang et al. 2023) and streptophyte algae (Wickett et al. 2014; 
Morris et al. 2018; Puttick et al. 2018; Hess et al. 2022). 
Additional work has investigated the phylogeny and diver
gence times of nongreen plant lineages but at higher taxonom
ic resolution (e.g. eukaryotes) and with shallower species 
sampling (Sánchez-Baracaldo et al. 2017; Betts et al. 2018; 
Lutzoni et al. 2018; Strassert et al. 2021). This work incorpo
rates both a breadth and depth of taxonomic sampling, 
spanning rhodophytes, glaucophytes, chlorophytes, and strep
tophyte algae.

We first inferred a rooted phylogeny of Archaeplastida, 
using both concatenation- and coalescent-based approaches, 
combined with tree topology testing. We then estimated the 
timescale of archaeplastid evolution, incorporating an up
dated appraisal of the fossil record and a broad taxonomic 
sampling of genes. Finally, we reconstructed the evolution 
of multicellularity across Archaeplastida, demonstrating that 
their timing coincides with the Cryogenian. These results are 
compatible with the hypotheses that environmental condi
tions during Cryogenian Snowball Earth glaciations under
pinned the evolution of archaeplastid multicellularity and 
the exaptive evolution of land plant innovations envisaged 
by the CPT hypothesis.

Results

Phylogenomics Resolves the Relationships of 
Archaeplastida

Recent genome and transcriptome sequencing of under- 
represented lineages can be utilized to address poorly re
solved nodes in the archaeplastid phylogeny. We built a 
comprehensive dataset of 241 species, with improved re
presentation for previously under-sampled lineages, most 
notably streptophytes, early diverging chlorophytes, and rho
dophytes (supplementary data S1, Supplementary Material
online, supplementary information S1, Supplementary 
Material online). Maximum likelihood analysis, based on a 
concatenation of 96 genes using the best-fitting model for 
each gene partition, resolves the fundamental split within 
Archaeplastida between rhodophytes and glaucophytes 
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plus Viridiplantae, recovers two clades of green plants (chlor
ophytes and streptophytes), and supports Bryopsidales as sis
ter group to the chlorophyceae (Fig. 1). Our phylogenetic 
analyses also support the monophyly of Archaeplastida, the 
sister group relationship between Zygnematophyceae and 
land plants (Anydrophyta) and the monophyly of bryophytes 
and tracheophytes (Embryophyta; Fig. 1), in agreement with 
recent work (Wickett et al. 2014; Puttick et al. 2018; 
Gawryluk et al. 2019; One Thousand Plant Transcriptomes 
Initiative 2019; Price et al. 2019; Harris et al. 2020). These 
relationships were also supported in our coalescent-based 
analyses (supplementary information S2, Supplementary 
Material online).

Phylogenetic conflict associated with contested relation
ships was addressed using approximately unbiased (AU) 
tests (Fig. 2), allowing for evaluation of the support for 
the recovered and alternative phylogenetic relationships. 
The relationships recovered receive support based on this 
analysis, while previously proposed alternative topologies 
for Prasinodermophyceae (Li et al. 2020) and Bryopsidales 
(Fang et al. 2017) were not supported by the AU test. 
Several relationships remain enigmatic, with either support 
for multiple competing topologies or conflicting support 
across datasets (Fig. 2). Overall, these analyses provide a ro
bust framework to date early archaeplastid evolution.

The Timescale of Early Archaeplastid Evolution
We estimated divergence times along the resolved phylogeny 
of Archaeplastida (Fig. 3), aided by a dataset of 15 fossil cali
brations (supplementary information S3, Supplementary 
Material online). The red alga, Bangiomorpha pubescens 
and the green alga, Proterocladus antiquus are considered 
as the oldest convincing records of Archaeplastida (See 
Materials and Methods for further discussion on archaeplas
tid fossils). Within the multicellular land plants, robustly sup
ported fossil calibrations were identified for the major nodes 
in the embryophyte phylogeny.

Our results support an origin of Archaeplastida during 
the Mesoproterozoic (1,712 to 1,387 Ma), while crown- 
rhodophytes, crown-glaucophytes, and crown-Viridiplantae 
emerged 1,613 to 1,284 Ma, 1,624 to 1,317 Ma, and 1,369 
to 1,147 Ma, respectively (Fig. 3). Among Viridiplantae, 
crown-chlorophytes diverged by 1,297 to 1,088 Ma while 
crown-streptophytes diverged by 1,199 to 998 Ma (late 
Mesoproterozoic—earliest Neoproterozoic). Within the 
streptophytes, Phragmoplastophyta emerged 901 to 760 Ma, 
crown-Anydrophyta (the clade of Zygnematophyceae 
and land plants) diverged 796 to 671 Ma, while crown- 
Embryophyta emerged 586 to 526 Ma in a late Ediacaran 
to Cambrian interval.

To explore the impact of different models of substitution 
and rate heritability on divergence time estimation, we under
took analyses using the CAT-GTR model in Phylobayes and 
the correlated rates model in MCMCTree, respectively 

(supplementary informations S6 and S7, Supplementary 
Material online). These different approaches produced diver
gence time estimates that were largely congruent with our 
main analysis. For example, the correlated rates analysis re
covered a divergence time for crown-Anydrophyta of 742 
to 654 Ma whilst the initial analysis recovered an estimate 
of 796 to 671 Ma. These results suggest that the divergence 
timescale derived from our main analysis, using the uncorre
lated rates model in MCMCTree, is robust of these methodo
logical variables.

Independent Emergence of Multicellular Archaeplastids

Stochastic mapping of ancestral states of multicellularity in 
early archaeplastids revealed that multicellularity in strepto
phytes and rhodophytes was present in the ancestors of 
Anydrophyta and Eurhodophytina, respectively (Fig. 4, 
supplementary informations S4 and S5, Supplementary 
Material online). Taking our timescale analysis into consider
ation, the radiation of these two multicellular lineages spans 
the Cryogenian (720 to 635 Ma). The diversification of chlor
ophytes was accompanied by multiple origins of multicellular
ity (e.g. Bryopsidales, Chaetophorales, and Oedogoniales). 
The diversification of multicellular Chaetaophorales (661 to 
441 Ma) possibly occurred during the Cryogenian while the 
radiation of multicellular Bryopsidales (609 to 413 Ma) and 
Ulvales (364 to 237 Ma) occurred more recently.

Discussion

Comparison to Previous Studies

We present a time-calibrated phylogeny of archaeplastid evolu
tion using a large-scale multigene dataset and an up to date 
suite of fossil calibrations. Modeling the evolution of cytomor
phology within this framework reveals multiple, independent 
transitions from unicellular to multicellular growth in archae
plastids during the Neoproterozoic (Fig. 4). Recent studies 
have resulted in contradictory phylogenies. The phylogeny 
from the One Thousand Plant Transcriptome Project (1KP 
project) recovered Prasinococcales as sister to streptophytes 
(One Thousand Plant Transcriptomes Initiative 2019) while 
analysis of the Prasinoderma coloniale genome recovered 
Prasinococcales as the sister group to all other green plants 
(Li et al. 2020). The 1KP project also recovered support for 
two positions for Bryopsidales while recent phylogenomic 
analyses found support for contrasting positions for 
Bryopsidales between analytical approaches (One Thousand 
Plant Transcriptomes Initiative 2019; Del Cortona et al. 2020). 
Maximum likelihood analysis of the Spirogloea muscicola gen
ome inferred Spirogloeales as an early branching lineage within 
Zygnematophyceae, although Bayesian inference pointed to a 
potential sister group relationship between Spirogloeales and 
land plants (Cheng et al. 2019). Our phylogenetic analyses, 
both concatenation- and coalescence-based, mark a 
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significant consolidation of recent thinking on archaeplastid 
evolution, addressing some long-standing questions including 
the grouping of green plants and the nonmonophyly of 
Ulvophyceae. Although our study focuses on the early evolu
tion of Archaeplastida, the relationships within land plants 
(e.g. monophyly of bryophytes) agree with the recent phylo
genetic analysis (Puttick et al. 2018; One Thousand Plant 
Transcriptomes Initiative 2019; Harris et al. 2020, 2022), 

providing additional support for these formerly uncertain re
gions of the archaeplastid tree.

Given the deep evolutionary history of early archaeplas
tid evolution, previous analyses have wide-ranging diver
gence time estimates. The origin of Archaeplastida has 
been estimated to the middle Palaeoproterozoic to early 
Mesoproterozoic interval (2137 to 1118 Ma; 5,7 to 9,11). 
Our analysis refines these estimates, recovering a divergence 

FIG. 1.—Phylogeny of Archaeplastida based on concatenation-based analysis of 96 genes representing 180 species. Branches and taxa are grouped into 
Outgroup (red group including Palpitomonas bilix), Rhodophytes (pink group including Chondrus crispus), Glaucophytes (yellow group including Cyanophora 
paradoxa), Chlorophytes (green group including Volvox carteri), Streptophyte algae (purple group including Chara braunii and Spirogloea muscicola), 
Bryophytes (blue group including Marchantia polymorpha) and Tracheophytes (orange group including Arabidopsis thaliana).
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time of 1712 to 1387 Ma, spanning the late-Paleoproterozoic 
to early-Mesoproterozoic. Viridiplantae has been estimated to 
emerge between the middle Mesoproterozoic to middle 
Neoproterozoic (1,400 to 669.9 Ma; 5,7,10,11) with our 
analysis recovering a divergence time of 1.369 to 1,147 Ma, 
during the mid-late Mesoproterozoic. Previous analyses have 
dated the origin of the first streptophytes during the 
middle Mesoproterozoic to late Neoproterozoic era (1,340 to 
629.1 Ma; 5,10,11). Our analysis recovers a divergence 
time of 1,199 to 998 Ma (late Mesoproterozoic—earliest 
Neoproterozoic). These differences between our study and pre
viously published work are likely due to taxon sampling as well 
as the interpretation of the fossil record, particularly for studies 
with taxa from the rhodophytes, glaucophytes, and green 
plants (Sánchez-Baracaldo et al. 2017; Betts et al. 2018; 
Lutzoni et al. 2018; Strassert et al. 2021).

Stochastic mapping, based on the time-calibrated phyl
ogeny, is consistent with the Cryogenian multicellularity hy
pothesis, in which global glaciations promoted the origin of 
multicellularity across the eukaryotes (Fig. 4). Our timescale 
is compatible with this hypothesis, at least for red and strep
tophyte algae, though show contrasting patterns for the 
chlorophytes. For the latter, our data indicate that the 
Cryogenian multicellularity hypothesis is plausible for the an
cestor of Chaetophorales and Oedogoniales. However, we 

show here that multicellularity within Bryopsidales and the 
Ulvophyceae originated in the Phanerozoic.

Stochastic mapping estimates ancestral states to a given 
node (crown group); however, the evolution of multicellular
ity may predate this ancestor (stem group). Therefore, while 
our analysis has localized the evolution of multicellularity to 
particular stem branches, the precise point of these state tran
sitions is difficult to pinpoint. As such, while our analysis can 
provide a confident most recent divergence time of multicel
lular groups, there is a degree of uncertainty about the upper 
end of these estimates. This uncertainty may affect the poten
tial temporal relationship between the origins of multicellular
ity and snowball Earth. The coding of characters also has 
important implications for ancestral character states. The cod
ing of characters did not dramatically change the ancestral 
states in streptophyte and red algae. However, this did impact 
the ancestral state reconstruction in the chlorophyte algae, 
with the approaches coding more divisions of multicellularity 
(siphonous, sarcinoid, etc.) led to separate, distinct origins of 
multicellular groups (supplementary information S5a and b, 
Supplementary Material online). When these divisions of 
multicellularity (siphonous, sarcinoid, etc.) were placed within 
a single multicellular group, then multicellularity emerged 
once in the ancestor of Ulvophyceae and Chlorophyceae 
(supplementary information S5c, Supplementary Material

Group Node AU Rejected Alt. topologies

Archaeplastida 1 0.184 No Yes

Viridiplantae 2 0.553 No No

Pedino/Chlorodendrophyceae 3 0.535 No No

Bryopsidales 4 0.459 No No

Land plant sister group 5 0.114 No No

Spirogloeales 6 0.0937 No No

Spirogyra 7 0.0506 No Yes

Land plants 8 0.466 No No

Rhodelphis
Cyanidioschyzon merolae
Cyanidiales
Chroodactylon ornatum
Rhodochaete parvula
Porphyridiophyceae

Rhodellophyceae

Bangiophyceae

Florideophycaee

Glaucophytes

Mesostigma viride
Chlorokybophyceae

Klebsormidiophyceae

Charophyceae

Coleochaetophyceae

Tracheophytes

Bryophytes

Spirogloeales

Desmidiales
Spirogyra sp. 
Zygnematales

Prasinodermatophyceae
Scourfieldia sp.
Mamiellophyceae

Pyramidophyceae

Nephroselmidophyceae

Pseudoscourfiediales
Picocystis salinarum
Chloropicon primus
Chlorodendrophyceae

Pedinophyceae

Trebouxiophyceae

Ulvophyceae

Chlorophyceae

Bryopsidales

1

2
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4
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(a) (b)

FIG. 2.—Support for alternative topologies of the Archaeplastida phylogeny. a) Phylogeny of Archaeplastida with key nodes numbered. b) Support for 
focal and alternative topologies for all major nodes in the Archaeplastida phylogeny.
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FIG. 3.—Time-calibrated phylogeny of Archaeplastida with 95% highest posterior density age uncertainties. Taxa are grouped into Outgroup (red group 
including Palpitomonas bilix), Rhodophytes (pink group including Chondrus crispus), Glaucophytes (yellow group including Cyanophora paradoxa), 
Chlorophytes (green group including Volvox carteri), Streptophyte algae (purple group including Chara braunii and Spirogloea muscicola), Bryophytes 
(blue group including Marchantia polymorpha) and Tracheophytes (orange group including Arabidopsis thaliana).
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online). Analysis of the posterior probability density of this 
binary definition of multicellularity highlights the increasing 
likelihood of a multicellular ancestor along the spine of the 
streptophyte phylogeny (supplementary information S5d, 
Supplementary Material online).

Multicellularity and the Cryogenian

With multiple origins across the tree of life as well as mul
tiple definitions, the transition to multicellularity is not a 
simple story (Rose and Hammerschmidt 2021). Here, we 
use a broad definition of multicellularity to encompass 
any nonunicellular species. While these nonunicellular spe
cies are found across our phylogeny, complex multicellular 
organisms have traditionally been classified in only two 
clades of Archaeplastida, florideophyte red algae, and 
land plants (Knoll 2011). Our results suggest a stepwise 
evolution leading to more complex multicellularity in both 
these lineages. Our timescale is compatible with the inter
pretation of diverse taxa in the Ediacaran Weng’an biota 
(635 to 541 Ma), as stem-Corallinales (Xiao et al. 1998).

The paucity of the streptophyte algal fossil record prevents 
morphological comparisons, but phylogenetic analysis 

provides mechanistic insights. The evolution of multicellularity 
required changes to gene networks regulating cell to cell 
adhesion, intercellular communication and cellular differenti
ation (Niklas 2014; Niklas and Newman 2020). The 
xyloglucan endotransglucosylase/hydrolases gene family, 
involved in plant cell wall expansion, were horizontally 
transferred from Alphaproteobacteria to the ancestor of 
Phragmoplastophyta and Klebsormidiophyceae and subse
quently diversified in younger lineages (Shinohara and 
Nishitani 2021). Importantly, this gene was transferred during 
the Cryogenian. Several novel genes involved in cellulose syn
thesis, and therefore cell wall construction, emerge in the an
cestor of Phragmoplastophyta and Klebsormidiophyceae 
(Lampugnani et al. 2019). Indeed, genome sequencing of 
zygnematophyte genomes indicated that most of the en
zymes for cell wall innovations were present in this ancestor 
(Feng et al. 2023). Genome analysis has demonstrated how 
proliferations of genes involved in phytohormone signaling 
and cellular development lead to the emergence of the 
phragmoplast, a cytoplasmic structure involved in cell div
ision, in the streptophyte lineage Phragmoplastophyta 
(Umen 2014; Nishiyama et al. 2018). Further genetic diversi
fication and origin of new genes in Anydrophyta led to the 

FIG. 4.—Ancestral state reconstruction of cytomorphological traits across the Archaeplastida. The topology of the tree is based on collapsed branches of 
the analysis presented in Fig. 3. Branch lengths are based on age estimates from the timescale analysis presented in Fig. 3. Ancestral state plotted onto the tree 
are summarized from supplementary information S5b, Supplementary Material online.
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emergence of all major enzymes for the synthesis of cell wall 
components (Feng et al. 2023). The findings from the litera
ture above and our analysis of the divergence time of 
Archaeplastida correlates the emergence of these genes to 
the Cryogenian, providing an initial mechanistic basis of 
multicellular adaptations.

Recent biomarker analysis has suggested that archae
plastid algal lineages became dominant over cyanobacteria 
after the Sturtian glaciation (Brocks et al. 2017; Hoshino 
et al. 2017; Brocks 2018). Some recent work has conflated 
the emergence of crown group eukaryotes with their early 
diversification (Porter et al. 2018; Budd and Mann 2020; 
Porter 2020), therefore proposing much later divergence 
time estimates (e.g. the Mesoproterozoic–Neoproterozoic 
boundary). However, our analysis identifies a distinction be
tween the origin of photosynthetic eukaryotes in the 
late-Paleoproterozoic to early-Mesoproterozoic and their 
rise to ecological dominance (Figs. 3 and 4). Our analyses 
do not directly address when algae achieved ecological 
dominance though we note that there are alternative ex
planations of the biomarker record and that ecological 
modeling suggests they achieved significance early in the 
Proterozoic (Eckford-Soper et al. 2022).

Alongside environmental factors of the Snowball Earth 
conditions during the Cryogenian, several other drivers of 
multicellularity have also been proposed, including oxygen 
concentration, predation and nutrient concentration (Mills 
and Canfield 2014; Brocks et al. 2017; Herron et al. 2019). 
The ability to extract increased oxygen and nutrients, via 
multicellularity, may have provided ancestral organisms 
with competitive advantages in ancient environments 
(Knoll 2011; Brocks et al. 2017) while selection imposed 
by predators may have contributed to the emergence of 
multicellularity (Herron et al. 2019). These may have been 
additional important factors contributing to the coloniza
tion of snowball Earth by ancestral multicellular algae.

Plant Terrestrialization and the Cryogenian
The estimate of 796 to 671 Ma for the divergence of 
Anydrophyta is entirely compatible with the Cryogenian 
plant terrestrialization hypothesis (Fig. 3). While temporal 
co-occurrence is distinct from causality, an origin for 
Anydrophyta during the Cryogenian is intriguing in the 
light of ancient cryospheric environments which are hy
pothesized as a major factor in the selection of key biologic
al adaptations to terrestrial environments, leading 
ultimately to the origin of crown-embryophytes in the earli
est Phanerozoic. This indicates that the time between the 
divergence of Embryophyta from Zygnematophyceae and 
the divergence of bryophytes from tracheophytes (i.e. the 
Embryophyte stem-lineage) was between 270 and 85 Myr 
in duration. In either instance, this is a long time span in 
which to assemble the body plan of crown-embryophytes, 
including the acquisition of embryonic development, 3D 

growth, cuticle, stomata, meiospores and, likely, vascular 
tissues and axial branching (Donoghue et al. 2021). At 
the least, our ancestral state estimation indicates that the 
streptophyte lineage was already multicellular before the 
origin of Phragmoplastophyta, providing formal trait-based 
inference that Zygnematophyceae are secondarily simpli
fied, corroborating recent inferences that these algae 
have lost many morphological traits (Buschmann and 
Zachgo 2016; Moody 2020; Hess et al. 2022) and genes 
since their common ancestor with land plants (Cheng 
et al. 2019; Bowles et al. 2020; Jiao et al. 2020; Gong 
and Han 2021; Harris et al. 2022). It remains unclear in 
which environment and in what order these novelties ar
ose. Extant Zygnematophyceaen algae (e.g. Ancylonema 
nordenskiöldii and A. alaskana) inhabit modern glaciers 
and are found in the sister lineage to land plants 
(Williamson et al. 2019; Procházková et al. 2021). 
Genome analysis of extant glacier algae will provide insight 
into these ancient physiological adaptations.

The origin of multicellular archaeplastids transformed 
the atmosphere, with larger organisms undertaking higher 
rates of photosynthesis, consuming more carbon dioxide 
and producing more oxygen (Simpson 2021). This evolu
tionary innovation led to ancestral archaeplastids becoming 
the dominant contributor to net primary production in an
cient environments, surpassing cyanobacteria (Brocks et al. 
2017). The consequent increase in atmospheric oxygen 
likely led to the development of new ecological niches 
and increased efficiency in the transfer of nutrients and en
ergy between complex trophic structures. Elevated energy 
availability drove the rise of increasingly complex organisms 
and subsequently ecosystems. Ultimately, these drastic evo
lutionary changes would provide the backdrop to the origin 
of the first land plants, one of the most profound geobiolo
gical events in Earth history.

Materials and Methods

Dataset Selection

We used a latest sampling of transcriptome and genome 
data to infer the evolutionary history of Archaeplastida. 
Specifically, these included nonembryophyte transcrip
tomes from the one thousand plant transcriptomes project 
and genomes across the archaeplastid tree of life 
(supplementary information S1, Supplementary Material
online, supplementary data S1, Supplementary Material
online). Taxonomic sampling and genome completeness 
are key factors influencing the reconstruction of phylogeny. 
Considering this, distinct datasets were curated focusing on 
different branches of early archaeplastid evolution and the 
quality of the input data. These different datasets were 
used to assess the robustness of recovered topologies. 
On the whole, topologies across datasets were congruent. 
In total, eight datasets were assembled, focusing on 
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Streptophyta, Viridiplantae, and Archaeplastida with and 
without outgroup taxa. For each of these taxonomic groups, 
a data rich and taxon rich dataset were assembled. For the 
data rich datasets, BUSCO analysis, with the Eukaryota data
set, was used to assess the quality of transcriptome and gen
ome data (Waterhouse et al. 2018) (supplementary data S1, 
Supplementary Material online). A benchmark of 30% miss
ing BUSCO genes was used to filter high quality data. For the 
taxon rich dataset, all taxa were included. Therefore, the da
tasets consist of Streptophyta data rich (57 species), 
Streptophyta taxon rich (64 species), Viridiplantae data rich 
(166 species), Viridiplantae taxon rich (203 species), Archae
plastida without outgroup data rich (178 species), Archae
plastida without outgroup taxon rich (239 species), 
Archaeplastida data rich (180 species), and Archaeplastida tax
on rich (241 species) (supplementary data S1, Supplementary 
Material online).

Orthology Inference

OrthoFinder (Version 2.3.7) was used to cluster protein 
coding genes into orthogroups (Emms and Kelly 2019), 
using default settings (orthofinder -f data_folder). For all 
datasets, no universally present single copy orthologs 
were identified. Single copy genes are important for accur
ate phylogenetic inference. Therefore, near-single copy 
orthologs were identified using a previously described py
thon script (Harris et al. 2020) which removes paralogous 
genes from orthogroups. The script enables the user to spe
cify a minimum taxonomic occupancy of each orthogroup, 
set at 80%. Therefore, the datasets consist of Streptophyta 
data rich (222 genes), Streptophyta taxon rich (122 genes), 
Viridiplantae data rich (204 genes), Viridiplantae taxon rich 
(134 genes), Archaeplastida without outgroup data rich 
(133 genes), Archaeplastida without outgroup taxon 
rich (69 genes), Archaeplastida data rich (96 genes), and 
Archaeplastida taxon rich (48 genes).

Species Tree Inference

Supermatrix Analysis

Single copy orthologs were aligned using MAFFT (Katoh 
et al. 2002) using –auto parameter and trimmed with 
Trimal (Capella-Gutiérrez et al. 2009) using the –auto
mated1 parameter. Multiple sequence alignments were 
concatenated using Phyutility to create a supermatrix 
(Smith and Dunn 2008). A bootstrapped maximum likeli
hood phylogeny was inferred using IQ-Tree (Nguyen et al. 
2015) using the Bayesian Information Criterion (BIC) to 
select best-fitting substitution model including empirical 
profile mixture models (C10–C60), which allow for com
positional heterogeneity across sites and are much less 
prone to mutational saturation than simple single-matrix 
models (Williams et al. 2021). 1,000 ultrafast bootstrap 
replicates were used.

Supertree Analysis

Individual maximum likelihood gene trees were inferred for 
each single copy gene using IQ-Tree (Nguyen et al. 2015), 
using the BIC to select the best-fitting substitution model 
including empirical profile mixture models (C10–C60), 
which allow for compositional heterogeneity across sites. 
Supertree analysis was conducted using ASTRAL (Zhang 
et al. 2018) with default settings (supplementary 
information S2, Supplementary Material online).

Testing the Proposed Relationships of Early 
Archaeplastids

Uncertain and contested relationships across the early ar
chaeplastid phylogeny were identified (Fig. 2b), including 
the position of the Zygnematophyceae, Bryopsidales, 
Prasinodermatophyta, Glaucophytes, and Rhodophytes 
(One Thousand Plant Transcriptomes Initiative 2019). 
Phylogenies were then constrained in IQ-Tree with these 
possible topologies and the support for these relationships 
was assessed using the Kishino and Hasegawa (Kishino and 
Hasegawa 1989; Goldman et al. 2000), Shimodaira and 
Hasegawa (Shimodaira and Hasegawa 1999), and AU 
(Shimodaira 2002) tests built within IQ-Tree. Based on 
these inferences, unlikely species tree hypotheses could 
then be rejected (Fig. 2).

Testing for the Impact of Across-branch Compositional 
Heterogeneity

Due to the deep evolutionary relationships of Archaeplastida, 
we tested the impact of compositional heterogeneity in our 
dataset. We used a previously described python script 
(Williams 2023), to filter out the 50% most compositional 
heterogeneous amino acid sites in our alignment. 
Phylogenetic analysis, using the methods from our superma
trix analysis, was repeated for this reduced dataset. This re
covered the same topology suggesting our analysis is based 
a phylogenetically informative alignment (supplementary 
information S8, Supplementary Material online).

Divergence Time Estimation

We undertook a critical review of the fossil evidence used 
to calibrate archaeplastid evolution (see calibration descrip
tions in the supplementary information S3, Supplementary 
Material online). Interpreting the fossil record of early 
archaeplastids is challenging as the remains of unicellular 
algae are simple, precluding confident assignment to 
extant clades, while fossilized multicellular algae are often 
difficult to discriminate from filamentous cyanobacteria 
(e.g. Archaeophycus yunnanensis has been alternately 
interpreted as a bangiophyte red alga (Xiao et al. 1998), a 
trebouxiophyte green alga (Shang and Liu 2022) or a cyano
bacterium (Pan et al. 2022). With this in mind, 15 calibrations 
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were assigned based on stringent criteria (Parham et al. 
2012), with the most influential being the multicellular 
green algae, Proterocladus antiquus (Gibson et al. 2018), 
used to calibrate the ancestor of Viridiplantae and the multi
cellular red algae, Bangiomorpha pubescens (Tang et al. 
2020), used to calibrate the ancestor of Archaeplastida 
(supplementary Information S3, Supplementary Material on
line). While we are confident in the assignment of these fossils 
to Chlorophyta and Rhodophyta (respectively), their assign
ment to more derived lineages within these clades is based 
on their general gestalt, not on evidence of a nested hierarchy 
of characters that would support their assignment within the 
crown clades of red or green algae (Bowles et al. 2022). 
Similarly, a suite of fossil taxa from the Ediacaran Weng’an 
biota have been assigned to Bangiophyta and to derived 
clades within Florideophyta (Xiao et al. 2004, 1998) and 
they have been used widely to calibrate these clades 
(e.g. Yoon et al. 2004; Parfrey et al. 2011; Yang et al. 
2016); unfortunately, they lack key phenotypic synapo
morphies of crown-Rhodophyta (e.g. Gabrielson et al. 
1985). We therefore interpret these taxa as records of the 
rhodophyte and chlorophyte total groups, reflecting uncer
tainty over whether they are member of their respective 
stem- or crown-groups. As we map the transition of multi
cellularity in rhodophytes to the common ancestor of 
Bangiophyceae and Florideophyceae (see results), this 
could be used to argue that these fossils should be used 
to calibrate a more derived position within red and green 
algae. However, it is difficult to exclude the loss of pheno
typic features as well as extinction of evolutionary inter
mediates, hence our conservative use of the fossil record. 
Other possible early records of Archaeplastida (e.g. 
Rafatazmia chitrakootia, Ramathallus lobatus, Tawuia, 
and many unicellular algae) (Bengtson et al. 2017; Tang 
et al. 2021; Moczydłowska and Liu 2022) are too uncertain 
to be used as calibrations, at least at present (Carlisle et al. 
2021; Bowles et al. 2022).

Node distributions using minimum and maximum con
straints were specified, with full phylogenetic and age 
justifications listed in supplementary Information S3, 
Supplementary Material online. To specify the prior distri
butions on node ages, all calibrated land plant nodes 
were given a hard minimum age and a soft maximum 
age. For all algal calibrations, as their dates are harder to re
strict, a 2.5% probability of exceeding both the minimum 
and maximum was used.

Initially, analyses were run without sequence data to ob
tain effective time priors, to ensure that the calibration 
densities and time priors were appropriate. A dataset of 
164 protein coding genes were identified based on a taxo
nomic occupancy of 78% amongst the Archaeplastida data 
rich taxa. The single copy orthogroups were divided into 4 
partitions according to their evolutionary rate, based on to
tal tree length in IQTree (Nguyen et al. 2015) and grouped 

using k-means clustering in R (R Core Team 2023). A log- 
normal independent relaxed clock model was used. Given 
the protein coding gene dataset, branch lengths were first 
estimated using codeml (Yang 2007). The gamma distribu
tion for the mean substitution rate was assigned a diffuse 
shape parameter of 2 and a scale parameter of 10, based 
on pairwise distance between Arabidopsis thaliana and 
Marchantia polymorpha, assuming a divergence time of 
469 Ma (Morris et al. 2018). The tree topology was fixed 
based on the focal maximum likelihood analysis above 
and was analyzed using the normal approximation method 
in MCMCtree (Yang 2007). The rate variation was assigned 
a shape parameter of 1 and a scale parameter of 10. The 
birth and death parameters were set to 1, specifying a uni
form kernel. Burn-in was set at 40,000 with 400,000 sam
ples and sampling frequency of 5. Two independent runs 
were completed. Trees were plotted using MCMCTreeR 
(Puttick 2019). A full list of posterior divergence time esti
mates are summarized in supplementary informations S9 
and S10, Supplementary Material online.

Comparison to Other Approaches

The impact of correlated rates on divergence times was as
sessed within MCMCTree, whilst all other parameters and in
put data remained the same as above. These were plotted in 
MCMCTreeR (supplementary Information S6, Supplementary 
Material online). Analysis was also conducted in Phylobayes 
(4.1: Lartillot et al. 2009), under log-normal autocorrelated re
laxed clock models, using site-heterogenous CAT + GTR + G 
models. The same input data, tree topology and fossil calibra
tion strategies were used as the main MCMCTree analysis. 
Two independent MCMC chains were run, the first 10% dis
carded as burnin. These were plotted in MCMCTreeR 
(supplementary information S7, Supplementary Material
online).

Stochastic Mapping of Multicellularity

Cytomorphology of species in this analysis was established 
from the published literature (supplementary information 
S4, Supplementary Material online). Previous analyses 
have coded characters for chlorophytes (Del Cortona 
et al. 2020; Li et al. 2021) which were transferred to this 
study. The tree topology was fixed based on the focal max
imum likelihood analysis (Fig. 1) whilst branch lengths cor
respond to the timescale analysis presented in Fig. 3. Traits 
were discretely characterized as unicellular, filamentous, col
ony, siphonocladous, siphonous, sarcinoid, and multicellular. 
Ancestral states were estimated in R (R Core Team 2023) 
using the package phytools (Revell 2012). Briefly, likelihood 
ancestral states for discretely valued traits (e.g. multicellular
ity) were estimated using a continuous-time Markov chain 
model (Revell 2012). The MCMC approach is used to sample 
character histories from their posterior probability distribution 
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(Huelsenbeck et al. 2003). To sample a greater portion of the 
character history, 1,000 stochastic maps were produced and 
summarized (supplementary Information S4, Supplementary 
Material online).

As multicellularity can be classified in different ways, various 
classifications of multicellularity were tested (supplementary 
Informations S4 and S5, Supplementary Material online). 
These included coding filamentous organisms as a separate 
classification to multicellular organisms (supplementary 
information S5a, Supplementary Material online), incorporat
ing filamentous within multicellularity (supplementary 
information S5b, Supplementary Material online) and coding 
multicellularity as a binary character e.g. unicellular or 
multicellular (supplementary information S5c, Supplementary 
Material online). Additionally for this binary definition of 
multicellularity, posterior probability density was calculated 
with the densityMap function from phytools (supplementary 
information S5d, Supplementary Material online). These 
analyses were largely congruent with each other. The ancestral 
states presented in Fig. 4 are summarized from supplementary 
information S5b, Supplementary Material online, based on the 
classification incorporating filamentous within multicellularity.
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Porter SM, Agić H, Riedman LA. Anoxic ecosystems and early eukar
yotes. Emerg Top Life Sci. 2018:2(2):299–309. https://doi.org/10. 
1042/ETLS20170162.

Price DC, Goodenough UW, Roth R, Lee J-H, Kariyawasam T, Mutwil 
M, Ferrari C, Facchinelli F, Ball SG, Cenci U, et al. Analysis of an im
proved Cyanophora paradoxa genome assembly. DNA Res. 
2019:26(4):287–299. https://doi.org/10.1093/dnares/dsz009.
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