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Attempts to explain the origin and diversification of vertebrates have
commonly invoked the evolution of feeding ecology, contrasting the passive
suspension feeding of invertebrate chordates and larval lampreys with
active predation in living jawed vertebrates. Of the extinct jawless vertebrates
that phylogenetically intercalate these living groups, the feeding apparatus is
well-preserved only in the early diverging stem-gnathostome heterostracans.
However, its anatomy remains poorly understood. Here, we use X-ray
microtomography to characterize the feeding apparatus of the pteraspid
heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is com-
posed of 13 plates arranged approximately bilaterally, most of which
articulate from the postoral plate. Our reconstruction shows that the oral
plates were capable of rotating around the transverse axis, but likely with
limited movement. It also suggests the nasohypophyseal organs opened
internally, into the pharynx. The functional morphology of the apparatus
in Rhinopteraspis precludes all proposed interpretations of feeding except for
suspension/deposit feeding and we interpret the apparatus as having
served primarily to moderate the oral gape. This is consistent with evidence
that at least some early jawless gnathostomes were suspension feeders and
runs contrary to macroecological scenarios that envisage early vertebrate
evolution as characterized by a directional trend towards increasingly active
food acquisition.
1. Introduction
Feeding figures prominently in attempts to understand the evolutionary origins
of vertebrates [1,2]. In contrast to invertebrate chordates, which exclusively
suspension feed with either a ciliated pharynx or a mucus net [3], the dorso-
ventrally closing jaws of living jawed vertebrates (crown-gnathostomes) and
‘placoderms’ [4–6] or anteroposteriorly moving system of cartilages in cyclos-
tomes (hagfishes and lampreys) [7–10] allow for a far broader range of
feeding strategies. The evolution of these unique vertebrate feeding modes
plays a major role in attempts to explain the evolution of vertebrate anatomy
and the origins of its modern diversity [11,12]. Prominently, the New Head
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Hypothesis [13–17] argues that the shift from suspension feeding to predation accompanied the emergence of neural crest, neuro-
genic placodes and the accompanying evolution of a prechordal head. The fossil record of the earliest vertebrates with a
prechordal head (i.e. parts formed from trabecular elements of the neurocranium anterior to the notochord [18]) provides a test
of this scenario [19], but the required data are currently lacking.

In particular, heterostracans, an extinct group of jawless stem-gnathostomes, have been a focus of the debate over feeding in early
vertebrates. This is because their oral region is more commonly and completely preserved than in any other such group, and they are
often interpreted as one of the earliest diverging lineages of stem-gnathostomes [1,20–23]. As such, heterostracans have the potential to
inform on the feeding ecology of the earliest members of the gnathostome lineage [24]. The heterostracan feeding apparatus is best
known in pteraspids, where the oral region is characterized by distinctive macromeric dermal plates [25–29]. The function of these
plates has been much debated, variously interpreted as biting [26] or slicing [30] ‘jaws’, a cyclostome-like feeding apparatus [31–34],
a sediment scoop [29] or a filtering structure [35–39]. Equally varied are the inferred ecologies, with heterostracans interpreted as
active predators [26], macrophagous selective predators [14,40], hagfish-like scavengers [31–34], herbivores [30], detritivores [29,41]
or suspension feeders (including filter feeding) [12,27,42–45]. The most recent investigation suggests that heterostracans were
suspension feeders because the analysed oral plates exhibited no evidence of the wear anticipated of a ‘tooth-like’ function [27].

The difficulty in studying the articulated heterostracan oral apparatus in situ contributes to this lack of consensus. In the rare
cases where they are preserved, articulated heterostracan oral apparatuses consist of small plates suspended in encasing sediment.
As a result, previous reconstructions of the oral apparatus have focused either on the gross arrangement of the apparatus, in which
the morphology and detailed arrangement of the individual plates are not characterized [29,31,33,34], or describe isolated elements
with little or no reference to articulated apparatuses [29,46,47]. Evidently, the feeding ecology of heterostracans remains in its
infancy and so we sought to advance understanding through a detailed characterization and reconstruction of the heterostracan
oral apparatus. We used X-ray microtomography to characterize the three-dimensionally articulated oral apparatus of
an exceptionally well-preserved specimen of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). Using computed
tomography, we generated volumetric models of the components of the oral apparatus and used these models to reconstruct their
three-dimensional arrangement in vivo. We use this reconstruction to assess competing hypotheses of heterostracan feeding.
2. Material and methods
(a) Specimens and locality
Rhinopteraspis dunensis (Roemer, 1855) NHMUK PV P 73217 is housed in the collections of the Natural History Museum, London
(NHMUK). In the museum catalogue, the specimen is listed as being collected from ‘Odenspiel Quarry’, likely corresponding to Jaeger
Steinbruch, a quarry near the village of Odenspiel, Reichshof, North-Rhine Westphalia, Germany or, possibly, outcrops in the local
area [48,49]. The Jaeger Quarry and surrounding outcrops expose sandstones and mudstones belonging to the Siegenian (?upper Pragian
or lower Emsian, Lower Devonian) Odenspiel Formation [50,51], deposited on the northern margin of the Rhenohercynian Basin, which
was a marginal transgressive and regressive delta-dominated setting [52]. The Odenspiel Formation falls within the ‘Pararhenotypics sub-
facies’ of Jansen [53], representing a marginal marine, intertidal lagoonal setting preserving a restricted fauna of fish, bivalve molluscs,
lingulid and terebratulid brachiopods, and eurypterids [48,49,54–56].

(b) Terminology
Various terminologies have been applied to the pteraspid oral region.Here, we follow the terminologyof Randle & Sansom [57] and, where that
is not possible, that of Blieck [58]; a comparison to terminologies used in especially relevant studies is given in electronic supplementarymaterial,
table S1. We extend existing terminology to describe the nature and arrangement of the oral plates (figure 1g). For the anatomical axes of the
animal as a whole, we use dorsal/ventral in the dorsoventral axis, rostral/caudal for the sagittal axis, and dextral/sinistral for the transverse
axis. When describing the oral apparatus itself we also use lateral/medial to describe lateral positions relative to the sagittal axis, ad/aboral
to describe the surfaces of plates relative to the mouth (i.e. adoral is the surface of a plate facing the mouth, aboral the surface facing away)
and proximal/distal to refer to positions on the oral plates relative to their articulation with the postoral plate, with oral plate tips being distal.

(c) Computed tomography
Rhinopteraspis dunensisNHMUK PV P 73217 (figure 1; electronic supplementary material, figure S1) was scanned using a Nikon Metrology
XTH 225ST X-ray tomography instrument based in Bristol Palaeobiology, University of Bristol. Two scans were undertaken, each composed
of two stacked scans. The first scan included thewhole headshield at a voltage of 223 kV and a current of 193 µA, with 3141 projections, and
with a 1 mm Sn filter, obtaining a dataset with 63.41 µm voxel resolution (figure 1a,b). The second scan targeted the oral region specifically,
including the posterior third of the rostrum, the orbital, oral and pineal parts of the headshield, and the anterior quarter of the dorsal and
ventral discs, at a voltage of 180 kV and a current of 178 µA, with 3141 projections of eight frames and 708 ms each, and with a 0.5 mm
Cu filter, achieving a voxel resolution of 22.91 µm (figure 1d–h, 2).The resulting tomographic datasets were segmented in Mimics v.25
(materialize) to create three-dimensional models. All three-dimensional models were visualized in Blender 3.5 (blender.org).

(d) Reconstruction and animation
Three-dimensional models of the higher resolution scan set ofRhinopteraspiswere imported into Blender for retrodeformation (figure 3). Use
of Blender tools for retrodeformation followed the recommendations and techniques set out by Herbst et al. [60]. Initial retrodeformation
focused on the best-preserved plates and thosewith clearly delineated articulations [61], including the rostral, orbital, supraoral and paraoral
plates. After rearticulating and repairing deformation (see electronic supplementary material, information), these elements provided a
framework to delimit the dorsal and lateral extent of the oral plate array. The oral plates were aligned, maintaining their preserved
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Figure 1. Rhinopteraspis dunensis NHMUK PV P 73217. (a–c) Rendering of head shield based on computed tomographic data in (a) sinistral, (b) dextral view and
(c) transparent with scheme of anatomical axes. (d–h) Renders based on higher resolution data showing the oral apparatus in more detail in (d ), ventral view,
(e) sinistral view, ( f ) dextral view, (g) rostral view, (h) rostro-ventral view. Green and blue parts of three-dimensional renders represent oral region. Abbreviations:
S, sinistral (left), D, dextral (right). Scale bars represent 5 cm in panels (a,b), 1 cm in (d–h).
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order, within this delimited area by placing their dorsal tips close to themargin of themouth and rotating the plates caudoventrally tomatch
the angle of the surrounding plates. The postoral plates were then fitted to the proximal ends of the oral plates. The proximal ends of the oral
plates were then readjusted into articulation with the sulcus preserved in the postoral plates (figure 2c), while maintaining alignment with
the closely articulated lateral oral- and paraoral plates and each other. Finally, the ventral disc was retrodeformed and articulated with
the postoral plate. The reconstructed specimen was animated in Blender to simulate the movement of the oral plates (electronic supplemen-
tary material, figure S3). Empties (single geometry-less points that act as handles for object transformation without interfering in the render
process) were placed between each oral plate and the postoral plate below, so that the local x-axis of each was aligned with the approximate
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outer boundary of the postoral plate. Each oral platewas then parented (=linked) to the empty below it. These empties were then animated to
rotate around their local x-axes, causing the parented oral plate to also rotate around that axis.
3. Description
NHMUK PV P 73217 is an almost-complete three-dimensional specimen of Rhinopteraspis dunensis, preserving the entire head-
shield and articulated body scales (figure 1a,b; electronic supplementary material, figure S1). The specimen has been crushed
laterally, with the oral region and ventral shield displaced rostro-dorsally (figure 1). Otherwise, the specimen is complete and indi-
vidual oral elements appear to have maintained their original shape and relative location, as evidenced by their approximately
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symmetrical arrangement. The dermal skeletal anatomy of pteraspid heterostracans is well characterized in numerous taxa [25,62]
to which that of Rhinopteraspis dunensis NHMUK PV P 73217 conforms [39,63,64]. The headshield is composed of large dorsal and
ventral shields separated by paired cornual and branchial plates, with a dorsal spine set into the posterior margin of the dorsal
shield (figure 1a,b; electronic supplementary material, figure S1). Anterior to the dorsal shield is an elongate rostrum that is sep-
arated from the dorsal shield by paired orbital plates (figure 1a,b; electronic supplementary material, figure S1). The anterior length
of the rostrum is broken off from the rest of the specimen (figure 1a,b; electronic supplementary material, figure S1). The unpaired
pineal plate is indistinguishable from the top of the orbital plates in the scan data.

The oral region is bordered dorsally by the supraoral plate, laterally by paired paraoral plates, and caudally by the postoral
plate (figure 1). In previous descriptions of pteraspids, including Rhinopteraspis, the subrostral lamella and ascending postrostral
lamella have been characterized as part of the rostral plate [58,59], although Friman & Bardenheuer described paired plates in this
position, they termed them ‘subrostral plates’ [39]. In NHMUK PV P 73217 they comprise a separate structure, broken into three
parts (postmortem), which we term the supraoral plate (figures 1d,g,h and 2a,b). The supraoral plate is trapezoidal in shape, nar-
rowing rostrally. A pronounced furrow runs around its lateral and rostral margins, which is overlapped by the paraoral, orbital
and rostral plates; the margins of the plate sweep ventro-caudally to form two latero-ventral arms (figure 2b). The rostral half of the
ventral surface of the supraoral plate (the subrostral lamella) is surmounted by a superficial layer of ornament and made convex by
a prominent median crest, aligned rostro-caudally (figure 2b). The caudalmost half (the ascending postrostral lamella) curves
upwards into the mouth, lacks dentine ornament (as in Rhinopteraspis cornubica [59, p. 373]) and is effectively divided into two
furrows by the median crest. The rostral border of this area presumably represents the position of the oral opening; this border
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is marked by a row of tubercles, comprising one large medial tubercle and two pairs of smaller tubercles on either side (figure 2b).
The paired paraoral plates are elongate, taper rostrally, and overlie large rostro-lateral overlap surfaces on the orbital plates, rostral
to the orbits (figures 1d–f and 2a). We interpret the ‘olfactory grooves’ identified in Rhinopteraspis cornubica by Tarlo [59, fig. 1] as
the overlap surfaces between the paraoral plates and supraoral plate (figure 2a) [37].

The postoral plate is bow-shaped and originally symmetrical, although the right process is damaged (figure 2a,c). The ventral
surface is smoothly convex. The inner surface has a caudal overlap surface that is concave to curve around the anterior rim of the
ventral shield, and a dorsal surface that forms the ventral margin of the oral opening, bearing paired sulci for the oral plates that
are interrupted medially by a raised area (figure 2c). Paired lateral plates and lateral postoral plates lie between the postoral plate
and the orbital plates (figures 1 and 2). The extensive overlap between the plates surrounding the mouth and the larger head shield
plates strongly suggests that they comprised an integrated structural unit with little or no movement relative to each other.

The oral apparatus itself is composed of 13 imbricated oral plates and one pair of lateral oral plates (figures 1 and 2; electronic
supplementary material, figure S2). The aboral, mediolateral surfaces of each oral plate, as well as the lateral surfaces of the hook,
are all faced with tuberculated ornament (figure 2f–i). However, the lateral and adoral surfaces of the oral plates, as well as the
ventral side of the hook and the proximal end of the plates, are all unornamented, instead exhibiting a porous surface texture
reflecting open vascular canals. The plates are arranged bilaterally about the midline into sinistral and dextral series. Although
plate pairs that occur in equivalent positions on either side of the midline are similar, they do not exhibit mirror-image symmetry.
In particular, the unpaired medial plate is not symmetrical but, rather, is continuous with the sinistral series (figure 2e; electronic
supplementary material, figure S2). Each oral plate has the same general morphology of a main limb with a rhomboidal cross-sec-
tion, a distal hook (except for the most laterally placed plates), and a proximal articulation surface for the postoral plate (figure 2;
electronic supplementary material, figure S2). There are six oral plates in the sinistral series (S1–6) and six in the dextral series
(D1–6), each preserved inclined at varying degrees (maximum about 45°) to each other along their coronal axis. The more medially
placed the plate, the more inclined it is along its long axis to provide a fit with the adjacent oral plate; the lateral and medial faces of
the plates overlap and imbricate, inclined at increasing angles relative to the sagittal plane, from medial to lateral. The distal hooks
of the oral plates curve adorally, while the proximal ends of the plates are notched, reflecting the ventral limit of the external
dermal ornament, serving as articulation with the postoral plate (except for the medial plate M).

Although the oral plates have similar morphologies, individually they vary in relative proportion depending on their position
within the apparatus (figure 2; electronic supplementary material, figure S2). The distal hook of the unpaired medial oral plate M is
as long as the main proximal limb. This plate is preserved overlying the lateral two oral plates D1 and S1. The lateral side of its
proximal end is notched to fit with the left medial face of D1. Plate M curves dextrally such that it fits the curvature of the dextral
face of the adjacent oral plate S1. The main proximal limb of oral plates D1 and S1 are twice as long that of M, with a narrow base;
similarly, it may not have articulated with the postoral plate, but the hooks in D1 and S1 are as large and very similar in shape.
These plates fit around oral plates S2 and D2, which fit around S3 and D3, etc.; these pairs have narrow bases and slightly smaller
hooks than S1 and D1. Plates S4 and D4 have a slightly broader base and proportionally shorter hook. This trend continues lat-
erally, with increasingly shorter hooks and wider bases in S5 and D5. Finally, S6 and D6 have no perceptible hook and a very broad
base. The lateral edges of plates S6 and D6 is concave, fitting the medial edge of the lateral oral plates.

The lateral oral plates aremorphologicallydistinct fromtheoral plates (figure 2; electronic supplementarymaterial , figureS2), approxi-
mately triangular, tapering rostrally with a curvedmedial margin that matches the lateral profile of the lateral-most oral plates (figure 2a;
electronic supplementarymaterial , figureS2). Thebetter-preservedsinistral lateral oral plate appears tohaveadistinct notch in itsposterior
side (electronic supplementary material, figure S2A,C), although this is difficult to corroborate from the dextral lateral oral plate.
4. Reconstruction
The combined width of the bases of the oral plates, when aligned perpendicular to a sagittal plane, matches the length of the sulcus
on the postoral plate (figure 3) and the complementary symmetry exhibited by adjacent plates indicates that they were capable of
almost completely filling the width of the oral opening. In this position, the lateral-facing surface of each oral plate overlaps the
adoral surface of its outer neighbour (figure 3). The lateral surfaces of the outermost oral plates fit closely with the lateral oral
plates (figure 3c,d). M, S1 and D1 appear to lie on top of the neighbouring oral plates rather than contacting the postoral plate.
When viewed caudally, this brings the hooks of the plates into alignment, forming a plane above the posterior unornamented surface
of the plates (figure 3d ). This reconstruction also suggests that the oral apparatus fits together such that the tops of the oral plates
extend to the top of the mouth to almost meet the supraoral plate. The medial crest of the supraoral plate creates a convex dorsal
margin of the mouth, and the increasing length of the oral plates in lateral positions means that their dorsal tips also follow this
convex line. Thus, when fully closed, there would have remained a short but wide opening (cf. [65]) into which projected the
dorsal tips of the oral plates and the medial crest and associated tubercles of the dorsal oral plate. There is no evidence that the
plates intercalated with the tubercles demarcating the dorsal margin of the mouth at the rostral margin of the ascending postrostral
lamella, figure 2b). When modelled to open around the axis of the sulcus on the postoral plate synchronously, the oral plates do not
overlap as they rotate (figure 4; electronic supplementary material, figure S3). Instead, their placement along the curved axis of the
postoral plate sulcus causes them to splay outwards (figure 4; electronic supplementary material, figure S3).
5. Discussion
Based upon our three-dimensional reconstruction of the oral region in Rhinopteraspis, we are able to consider the oral plates as an
integrated apparatus and test hypotheses of its form and function. The endoskeleton of heterostracans is completely unknown
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Figure 4. Reconstruction of Rhinopteraspis dunensis based on NHMUK PV P 73217 in lateral view with oral plates animated to open to 30°. (a,b) Lateral view at
estimated resting position (a) and rotated aborally to 30° relative to resting (b). (c,d ) Lateral view bisected, at estimated resting position (c) and rotated aborally to
30° relative to resting (d ). Orange line is a hypothetical adductor muscle illustrating that the angle of this places a constraint on angle of rotation.
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beyond what can be inferred from the dermal skeleton [1]. Hence, we attempt to consider the constraints imposed by the dermal
skeleton, without speculating as to endoskeletal structure.

(a) Interpretation of the oral apparatus of Rhinopteraspis
Our reconstruction indicates that, even when the mouth was fully closed by occlusion of the oral plates, there would have
remained a short but wide gape that was effectively divided in two by the median crest of the supraoral plate (figure 2c). The
associated tubercles of the supraoral plate and tips of the oral plate would have projected into this space, further occluding it.
There is no evidence for separate upper oral plates as inferred by Stensio [33,34]. The morphologies of individual oral plates
are closely comparable to those observed in isolated oral plates of Loricopteraspis dairydinglensis recovered through acid digestion
of limestone [27,47,66]. The open vasculature on the lateral surfaces and adoral surfaces, as well as the ventral side of the hook and
the proximal end of each plate, is significant. Hence, these parts of the plates must have been embedded in soft tissue, the upper
limit of which would have been the proximal surface of the large projecting hooks on the adoral side of the oral plates. The medial
plates would have been supported entirely by this soft tissue which must have provided the basis of any movement of the plates
and so may have included unmineralized cartilage, muscles or tendons.

The large, curved overlap surface at a 45° angle between the postoral plate and the ventral plate in Rhinopteraspis (figure 2c)
suggests that movement of the postoral plate would not have been possible and that the postoral plate was static during feeding.
By contrast, the imbricated nature of the oral plates strongly suggests that they were mobile relative to the postoral plate. Any
movement requires rotation around the point of their attachment to the postoral plate. The rhomboid cross-section and the comp-
lementary symmetry of the oral plates would have prevented them either moving independently, or moving in an entirely sagittal
plane (electronic supplementary material, figure S3). Rather, they must have moved as an integrated unit, splaying ventro-laterally
as the plates rotated aborally on the sulcus of the postoral plate. The medial plates (M, S1, D1) that do not articulate with the post-
oral plate are the exceptions: their cross-sectional shape and ab/adoral overlap would have precluded their movement relative to
the other plates. If forward pointing denticles were present on the lateral surfaces of the oral plate hooks, as in Loricopteraspis and
Pteraspis [27,66], these structures would not have bordered the oral opening but, rather, the junction between each plate and its
neighbour, linked by soft tissue. Rather than being involved in food capture or processing, this ornamentation may have
helped to prevent particles from becoming lodged in the spaces between the plates [66] and their associated soft tissue, preventing
fouling of the oral apparatus (cf. Hamann & Blanke [3]).

Where it has been made explicit in a reconstruction, previous hypotheses of heterostracan feeding function in taxa with sep-
arate oral plates have assumed significant movement and a degree of rotation of the oral apparatus around the transverse axis
[26,29,31]. Although these reconstructions are not intended as precise models of function, they do indicate the degree of rotation
that is envisaged: the following values are approximations taken from reconstructions, to the nearest 5°. In ErrivaspisWhite [29, fig.
49] reconstructed the oral apparatus acting as a sediment scoop, with the postoral plate rotating aborally by 30° and the oral plates
a further 25°. Janvier [31, fig. 2] reconstructed the oral plates as a hagfish-like apparatus moving both into and out of the mouth,
with the oral plates and postoral plate rotating together aborally by approximately 80° from resting position and then adorally by
approximately 85° from resting position. Janvier [65, fig. 12] reconstructed a generalized pteraspid opening the oral plates, with the
postoral plate rotating 40° aborally and the oral plates an additional 50°. Bendix-Almgreen reconstructed two cyathaspids with
pteraspid-like oral plates in which only the oral plates themselves moved: Allocryptaspis [30, fig. 4A], where the oral plates
rotate adorally by 55° and Anglaspis [30, fig. 4E] where the oral plates rotate adorally by 55°.

However, our reconstruction suggests that movement was far more limited than previous reconstructions infer. In most of these
reconstructions the postoral plate(s) is assumed to move significantly in addition to the oral plates, either inwards [31] or outwards
[29,65]. An immobile postoral plate reduces the potential for rotation of the apparatus considerably. An absolute maximum for
movement is probably given by an angle of 180° relative to the angle of the adductor musculature, otherwise it would be impossible
to return the elements to a resting position (figure 4d ). Evenwith the least conservative assumption, as this musculature runs parallel



Athenaegis Anglaspis Allocryptaspis ProtopteraspisPoraspis Capitaspis Rhinopteraspis

cyathaspidids

Pteraspidiformes

Figure 5. The diversity of the anatomy of the oral region in heterostracans, showing Athenaegis [74], Anglaspis [44], Poraspis [75], Allocryptaspis [36], Capitaspis
[76], Protopteraspis [26] and Rhinopteraspis (this study). Oral plates shown in black, other parts of the dermal headshield in grey. Blue indicates the oral opening.
Phylogeny taken from [28].
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to the rostrocaudal axis of the animal this limits the oral plates to a rotation of about 55° relative to the hypothetical resting angle flush
with the other dermal plates in our reconstruction. Rotation seems likely to be evenmore limited than this based on the poorly devel-
oped joint between the oral plates and the postoral plate, as well as the suspension of the small median oral plates in soft tissue.
A structural analogue in a living vertebrate for heterostracan oral plates might be the branchiostegal plates in osteichthyans,
which support the branchiostegal membrane, and make limited, coordinated movements to aid the suction pump [67].

Because the aboral surfaces of the oral plates lack any kind of attachment surfaces the oral apparatus of Rhinopteraspis could only
have been moved from the adoral side with rostro-caudal movements. This is inconsistent with a gnathostome-like organization of
paired mandibular adductor muscles. However, living cyclostomes operate the oral apparatus by moving cartilages rostrally and
caudally along the floor of the pharynx. In hagfishes, keratinous toothlets are mounted on a cartilaginous dental plate that is
pulled anteriorly along a basal plate to evert the lingual apparatus, and posteriorly to return it to resting position [7,8,10]. In lampreys,
a medial piston cartilage is protracted rostrally, moving a medial apical cartilage, the action of which brings keratinous toothlets in
front of the apical cartilage into contact with other toothlets in a rasping action [9,68]. A medial groove along the visceral surface
of the ventral shield in some pteraspids has been cited as evidence for a cyclostome-like medial structure of the oral mechanism [1].
(b) Nasohypophyseal anatomy in heterostracans
Our reconstruction provides indirect evidence on the nasohypophyseal anatomy of Rhinopteraspis. Several authors have suggested
a hagfish-like morphology in heterostracans where an external nasohypophyseal duct opens into a prenasal sinus supported by a
hypothetical palatino-subnasal lamina [31–34,69]. However, there is insufficient space in our reconstruction above the oral plates
for such an opening, no direct evidence for any kind of palatino-subnasal lamina, and the dorsal border of the oral plates matches
the bilobate shape of the supraoral plate [69]. An alternative scenario sees heterostracans as having gnathostome-like paired nos-
trils [31,45,59]. We find no evidence for a gnathostome-like paired nostrils, and specifically the paired ‘olfactory grooves’ identified
in Rhinopteraspis [59] appear to be overlap surfaces. The remaining possibility, which we consider most likely, is that the nasal
cavities and hypophyseal organ opened into the roof of the mouth [70].

Interpretations of the nasohypophyseal region in heterostracans are closely tied to efforts to ally them to extant vertebrate
groups [33,34,59,69,70]. Rather than an explicitly cyclostome or gnathostome model, our reconstruction is instead consistent
with the nasal and hypophyseal organs in heterostracans opening into the oralobranchial cavity [70]. This would be most clearly
comparable to the anatomy of galeaspids, where these organs open into the spaces confluent with the oralobranchial cavity [71].
Based on the relative positions of the large, paired nasal organs in heterostracans, the position of which can be inferred from the
ventral surface of the dorsal headshield [72] any nasohypophyseal opening(s) would most likely be positioned dorsalocaudally
relative to the supraoral plate. The division of the ascending lamella of the supraoral plate into two furrows, a feature seen in
both pteraspid [41, plate 16, fig. 5] and cyathaspid heterostracans [73, figs. 123C, 135B] could be explained as a way of channelling
inflowing water to the paired olfactory organs.
(c) Comparison of oral anatomy with other heterostracans
The shape and arrangement of the oral plates in Rhinopteraspis is closely comparable to that in other Pteraspidiformes, which
are thought to comprise a clade within the heterostracans [28]. The shape of individual oral plates conforms closely to the
morphologies of isolated plates acid prepared from an articulated specimen of Loricopteraspis dairydinglensis [47, p. 37, 66]. The
arrangement of these plates is similar to articulated specimens of Protopteraspis [26] and Errivaspis [29] (figure 5). Importantly, the pos-
terior alignment of the hooks inRhinopteraspis (figure 3) can also be seen in other pteraspidswhere the adoral side of an articulated oral
apparatus is visible:Mylopteraspidella [34, fig. 44, p. 197] and Protopteraspis [26], as well as in Errivaspis [29, figs. 41–44]. Together, these
indicate that our interpretation of the feeding apparatus of Rhinopteraspis is more broadly applicable within pteraspids. However,
varied body shapes and positions of the oral opening indicate some diversity in feeding ecology (e.g.Doryaspis [77], Drepanaspis [78]).

Outside the pteraspidiform clade [28], heterostracan oral anatomies are considerably more varied. Athenaegis, the oldest articu-
lated heterostracan, is often assumed to be an outgroup to all other macromeric heterostracans [28,57,79,80], and its oral apparatus
is interpreted as being pteraspid-like in the sense of comprising a fan of finger-like plates [74] (figure 5). By contrast, cyathaspids, a
likely paraphyletic grade of macromeric heterostracans [28], have varied systems of one or several plates that cover the same region
of the headshield as the oral apparatuses of Athenaegis and pteraspids (e.g. Anglaspis [44], Poraspis [75], Capitaspis [76] and
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Allocryptaspis [36], figure 5). However, the homologies of individual plates in these cyathaspid oral plate systems are difficult to
reconcile, either within cyathaspids or by comparison with pteraspids. In amphiaspids, the oral aperture occurs at the end of a
tube in a single, fused headshield [81]. Meanwhile, the oral apparatuses of the ‘tessellate heterostracan’ taxa are completely
unknown [41]. Thus, while the oral apparatus of Rhinopteraspismay be representative of pteraspids, Athenaegis and, by implication,
macromeric heterostracans primitively, it may not be representative of heterostracans more generally, which may have exhibited
greater diversity in terms of feeding ecology. Further investigation is required to assess the ubiquity of suspension-feeding
within the group, and the position in the water column at which they fed.

(d) Implications for feeding in pteraspids and ancestral heterostracans
Our model of the articulated oral apparatus can be used to consider the various feeding strategies that have been proposed for
pteraspid heterostracans. These strategies can be roughly divided into macrophagy, predation, deposit/detritus feeding, and
microphagy or suspension feeding [82].

Hypotheses of macrophagous and predatory heterostracan feeding are based on analogy between heterostracan oral plates
and the gnathostome mandible (e.g. [26]), or more rarely the hagfish oral apparatus (e.g. [31]). However, the oral apparatus in
Rhinopteraspis is poorly constructed for biting or grasping. Although the ascending lamella bears tubercles that have been inter-
preted as the upper ‘jaw’ analogue [59], they do not occlude with the tips of the oral plates. Moreover, the angle of approach
of the plates to the preoral plate during closing is oblique, with a low mechanical advantage, and would have been poorly
suited to generating force. Finally, the oral plates themselves would not have formed a firm biting surface, with a poorly developed
joint with the postoral plate even in the broad-based lateral oral plates (e.g. plates S/D4–6), and the medial oral plates (e.g. plates
M, S1, D1) suspended in soft tissue or with very narrow-based articulations with the postoral plate. Reconstructions that interpret
the oral plates as elements analogous to hagfish-like toothlets [31] can be similarly rejected because of the junction between the
proximal tips of the oral plates and the sulcus in the postoral plate. All hypotheses of predatory ecology that require considerable
aboral rotation of the oral plates and postoral plate (see §5a) are physically impossible and, as such, can be rejected.

Deposit or detritus feeding interpretations typically envisage the oral apparatus as a ‘scoop’ that would have been used to
acquire sediment from the bottom of the water body [29]. As with predation, this requires the plates to evert substantially from
their resting position, aided by movement of the postoral plate [29, figs. 49,50]. We can reject this based on our reconstruction
of Rhinopteraspis, where significant movement of the oral plates is limited. However, we cannot rule out burial of the snout/
mouth in the substrate as a means of deposit feeding. The presence or absence of wear, which is often used as a line of evidence
in discussion of deposit feeding [27,83], is not visible in Rhinopteraspis at the resolution of our scan data. We note, however, that the
elongated snout in pteraspids such as Rhinopteraspis, along with the strongly convex ventral abdomen, would have restricted the
ability of the animal to place its mouth in contact with the substrate. Constraints imposed by the snout would also place the latero-
ventral orbits in contact with the substrate if the animal was deposit feeding; this is in marked contrast with the dorsally placed
eyes of contemporaneous osteostracans and galeaspids that are assumed to be deposit feeders [1,71,84].

Under interpretations of suspension feeding or deposit feeding, rostral rotation of the oral plates would have resulted in a greater
area of gape, increasing intake. The occluded oral apparatus leaves a restricted openingwith digitatemargins defined by the tips of the
oral plates and the tubercles of the dorsal oral plate that would have served to prevent fouling (cf. [3,66]) while facilitating inflow in a
manner analogous to straining functions seen in animals as diverse as flamingos, brachiopods, oysters and gastropods [85]. It is poss-
ible that the exposed tips of the oral plates in Rhinopteraspis acted as an analogous structure along with the tubercles on the supraoral
plate. The limitedmovement acted to control the entry of larger particles into themouth andmay also have served to provide ameans
to expel larger particles trapped between the plates [3]. It has been suggested that some cyathaspid heterostracans had an endostyle
like that which aids suspension feeding in larval lampreys and invertebrate chordates [45,86]. However, the evidence for this is limited
to the groove on the visceral surface of the ventral plate the position of which is likely incompatible with this identity [87].

(e) Implications for early vertebrate evolution
The New Head and New Mouth hypotheses [11,14] have argued for a long-term evolutionary shift towards increasingly
active food acquisition, from the filter-feeding of invertebrate chordates to macrophagous predation in living jawed vertebrates.
The feeding ecology of heterostracans is key to supporting or refuting these hypotheses, as this group represents one of the
earliest diverging members of the gnathostome stem-lineage. A diversity of feeding ecologies have been suggested for hetero-
stracans, from macrophagous predation, through scavenging and herbivory, to deposit and filter feeding. Our three-
dimensional reconstruction of the feeding apparatus of Rhinopteraspis dunensis precludes all proposed feeding strategies bar
suspension feeding or deposit feeding by burial of the mouth in the substrate.

Comparison to other heterostracans suggests that while this feeding ecology may not be shared by all members of the group,
the anatomy that underlies it is present in pteraspids and the oldest and earliest well-known heterostracan [74]; as such it may be
plesiomorphic for the clade. In other armoured stem-gnathostomes (osteostracans, galeaspids, thelodonts, pituriaspids, anaspids,
arandaspids and astraspids) there is little information on the anatomy of their feeding apparatus [1,71,84,88–91], but marked vari-
ation in their anatomy suggests a range of ecological roles. Meanwhile, evidence that filter feeding in ammocoete larval lampreys
represents an independent evolutionary innovation [23] (although see [92]) suggests that suspension feeding has evolved separ-
ately amongst jawless vertebrates at least once. Taken together with evidence for macrophagy in earlier diverging lampreys,
hagfish and conodonts [82,93,94], it is clear that early vertebrates and stem-gnathostomes established a diversity of feeding ecol-
ogies long before the origin of jaws. This finding is consistent with recent demonstrations that vertebrate innovations and
elaborations cannot be characterized by a directional trend towards increasingly active food acquisition [95–97], but, rather,
increasing ecological diversity.
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6. Conclusion
The lack of knowledge of the three-dimensional anatomy of early vertebrate feeding apparatuses has obscured their feeding ecology,
hindering the testing of macroecological scenarios that seek to explain early vertebrate evolution. Using X-ray microtomography, we
have reconstructed the oral apparatus of the pteraspid heterostracan Rhinopteraspis dunensis. The oral apparatus in Rhinopteraspis is
composed of onemedial and six pairs of bilaterally arranged oral plates, plus a pair of lateral oral plates. Inferred articulation of these
plates indicates that range of motionwas limited; the oral plates could onlymove in concert and could not rotate far.When occluded,
the oral plates left a short wide gape to themouth, closed partially by a convex crest extending from the supraoral plate and the distal
tips of the oral plates. The reconstructed anatomy precludes all proposed feeding modes bar suspension or deposit feeding in Rhi-
nopteraspis. Heterostracans more generally show a far wider range of oral anatomies and body shapes than in pteraspids [36], a
trend reflected in jawless vertebrates more broadly: a diversity of feeding ecologies was established early in vertebrate evolution,
long before the origin of jaws. Given the existence of contemporarymacrophagous vertebrate predators and scavengers, the presence
of suspension feeding heterostracans is incompatible with a directional trend in vertebrates towards increasingly active food
acquisition.
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